精英家教网 > 高中数学 > 题目详情

【题目】关于不同的直线与不同的平面,有下列六个命题:

①若

②若

③若

④若

⑤若

⑥若

其中正确命题的序号是__________

【答案】①③⑤

【解析】

①:根据线面平行的性质定理、面面垂直的判定定理,结合平行线的性质进行判断即可;

②:根据线面平行的判定定理进行判断即可;

③:根据线面平行的性质定理、面面平行的性质,以及平行线的性质进行判断即可;

④:在正方体中可以找到特例进行判断即可;

⑤:根据平面法向量的性质和空间向量夹角公式进行判断即可;

⑥:根据面面平行的性质,结合直线与直线的位置关系进行判断即可.

①:因为,所以存在过直线的一个平面与平面交于直线,显然有,而,所以,而,因此,故本命题是真命题;

②:只有当才能推出,故本命题是假命题;

③:因为,所以存在过直线的一个平面与平面交于直线,显然有,又,所以,因此,所以,故本命题是真命题;

④:在如图的正方体中:

平面记为平面,平面记为平面,直线记为直线,直线记为直线,显然符合,但是,(当然也可以是异面直线),故本命题是假命题,

⑤:因为,所以平面的法向量分别为:,因为所以为,故本命题是真命题;

⑥:因为所以直线没有交点,故两直线是平行线或异面直线,故本命题是假命题.

故答案为:①③⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分别在,,(单位:克)中,其频率分布直方图如图所示,

(Ⅰ)已经按分层抽样的方法从质量落在的蜜柚中抽取了个,现从这个蜜柚中随机抽取个。求这个蜜柚质量均小于克的概率:

(Ⅱ)以各组数据的中间值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚等待出售,某电商提出了两种收购方案:

方案一:所有蜜柚均以元/千克收购;

方案二:低于克的蜜柚以元/个收购,高于或等于克的以元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10.

1)求的值;

2)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:48.69.29.68.79.39.08.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥(其中为顶点,为底面圆心)的侧面积与底面积的比是,则圆锥与它的外接球(即顶点在球面上且底面圆周也在球面上)的体积比为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单位正方体中,点在线段上运动,给出以下三个命题:

①三棱锥的体积为定值; ②二面角的大小为定值;

③异面直线与直线所成的角为定值;

其中真命题有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时值金秋十月,正是秋高气爽,阳光明媚的美好时刻。复兴中学一年一度的校运会正在密锣紧鼓地筹备中,同学们也在热切地期盼着,都想为校运会出一份力。小智同学则通过对学校有关部门的走访,随机地统计了过去许多年中的五个年份的校运会“参与”人数及相关数据,并进行分析,希望能为运动会组织者科学地安排提供参考。

附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字12345表示小智同学统计的五个年份的年份数,今年的年份数是6

统计表(一)

年份数x

1

2

3

4

5

“参与”人数(y千人)

1.9

2.3

2.0

2.5

2.8

统计表(二)

高一(3)(4)班参加羽毛球比赛的情况:

男生

女生

小计

参加(人数)

26

b

50

不参加(人数)

c

20

小计

44

100

1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程,并预估今年的校运会的“参与”人数;

2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量,试求随机变量的分布列、期望和方差

3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?

参考公式和数据一:

参考公式二:,其中

参考数据:

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1)求曲线的极坐标方程和直线l的直角坐标方程;

2)设直线l与曲线交于不同的两点AB,点M为抛物线的焦点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,试判断函数的极值情况,并说明理由;

2)若有两个极值点.

①求实数的取值范围;

②证明:.注:是自然对数的底数)

查看答案和解析>>

同步练习册答案