精英家教网 > 高中数学 > 题目详情

【题目】(1)求不等式的解集.

(2)已知.若对于任意的,不等式恒成立,求的取值范围.

【答案】(1)当时,不等式的解集为;当时,不等式解集为;当时,不等式解集为;当时,不等式解集为;当时,不等式解集为;(2).

【解析】

(1)将不等式变形,因式分解,得到两个零点;对a分类讨论,比较与-1的大小关系,进而得到不等式的解集。

(2)代入解析式,化简后构造函数,通过求函数的最值解t的取值范围即可。

不等式为

时,原不等式的解集为

时,方程的根为

①当时,,∴不等式的解集为

②当时,,∴不等式的解集为

③当时,,∴不等式的解集为

④当时,∴不等式的解集为.

综上,当时,原不等式的解集为

时,不等式解集为

时,不等式解集为

时,不等式解集为;当时,不等式解集为.

恒成立等价于恒成立

的最大值小于或等于0.

,则由二次函数的图象可知在区间上为减函数,

,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SD底面ABCD,SD=2,其中分别是的中点,上的一个动点.

(1)当点落在什么位置时,∥平面,证明你的结论;

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=ex(ex﹣a)﹣a2x.(12分)
(1)讨论 f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2
(Ⅰ)求cosB;
(Ⅱ)若a+c=6,△ABC面积为2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.
(Ⅰ)证明:直线CE∥平面PAB;
(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对x∈(﹣ )恒成立,则φ的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知S2=6,an+1=4Sn+1,n∈N*
(1)求通项an
(2)设bn=an﹣n﹣4,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球

I)试问:一共有多少种不同的结果?请列出所有可能的结果;

)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.

(1)求证:平面ABE⊥平面BEF;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角 ,求a的取值范围.

查看答案和解析>>

同步练习册答案