【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽率,得到如下表格:
(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25” 的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?
参考公式: , .
【答案】(1) .(2) =x-3. (3)是可靠的.
【解析】试题分析:
(1)结合题意列出所有可能的事件,利用古典概型公式可得:事件“均不小于25” 的概率是;
(2)首先求得样本中心点为,结合线性回归方程系数计算公式可得回归方程为;
(3)结合回归方程的预测作用计算可得(2)中所得到的线性回归方程是可靠的.
试题解析:
(1)所有的基本事件为
(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),
(30,26),(30,16),(26,16),共10个.
设“m,n均不小于25”为事件A,则事件A包含的基本事件为
(25,30),(25,26),(30,26),共3个.
所以P(A)=.
(2)由数据得,另3天的平均数, ,
法一: ,
法二: ,
所以=27-×12=-3,
所以y关于x的线性回归方程为=x-3.
(3)依题意得,当x=10时,=22,|22-23|<2;当x=8时,=17,|17-16|<2,
所以(2)中所得到的线性回归方程是可靠的.
科目:高中数学 来源: 题型:
【题目】选修4—5: 不等式选讲
已知函数f(x)= 的定义域为R.
(Ⅰ)求实数m的取值范围;
(Ⅱ)若m的最大值为n,当正数a,b满足 =n时,求7a+4b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市拟兴建九座高架桥,新闻媒体对此进行了问卷调查,在所有参与调查的市民中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
(1)在所有参与调查的人中,用分层抽样的方法抽取部分市民做进一步调研(不同态度的群体中亦按年龄分层抽样),已知从“保留”态度的人中抽取了19人,则在“支持”态度的群体中,年龄在40岁以下(含40岁)的人有多少被抽取;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取6人做进一步的调研,将此6人看作一个总体,在这6人中任意选取2人,求至少有1人在40岁以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆: 的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限相交于点, .
(1)求椭圆的标准方程;
(2)设椭圆的左顶点为,右顶点为,点是椭圆上的动点,且点与点, 不重合,直线与直线相交于点,直线与直线相交于点,求证:以线段为直径的圆恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在, , 上的奇函数,当, 时, ().
(Ⅰ)求的解析式;
(Ⅱ)设, , ,求证:当时, 恒成立;
(Ⅲ)是否存在实数,使得当, 时, 的最小值是?如果存在,
求出实数的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应新农村建设,某村计划对现有旧水渠进行改造,已知旧水渠的横断面是一段抛物线弧,顶点为水渠最底端(如图),渠宽为4m,渠深为2m.
(1)考虑到农村耕地面积的减少,为节约水资源,要减少水渠的过水量,在原水渠内填土,使其成为横断面为等腰梯形的新水渠(如图(1)建立平面直角坐标系),新水渠底面与地面平行(不改变渠宽),问新水渠底宽为多少时,所填土的土方量最少?
(2)考虑到新建果园的灌溉需求,要增大水渠的过水量,现把旧水渠改挖(不能填土)成横断面为等腰梯形的新水渠(如图(2)建立平面直角坐标系),使水渠的底面与地面平行(不改变渠深),要使所挖土的土方量最少,请你设计水渠改挖后的底宽,并求出这个底宽.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的快速发展,民用汽车的保有量也迅速增长.机动车保有量的发展影响到环境质量、交通安全、道路建设等诸多方面.在我国,尤其是大中型城市,机动车已成为城市空气污染的重要来源.因此,合理预测机动车保有量是未来进行机动车污染防治规划、道路发展规划等的重要前提.从2012年到2016年,根据“云南省某市国民经济和社会发展统计公报”中公布的数据,该市机动车保有量数据如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
机动车保有量(万辆) | 169 | 181 | 196 | 215 | 230 |
(1)在图所给的坐标系中作出数据对应的散点图;
(2)建立机动车保有量关于年份代码的回归方程;
(3)按照当前的变化趋势,预测2017年该市机动车保有量.
附注:回归直线方程中的斜率和截距的最小二乘估计公式分别为:
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列, , , 满足,且当时, ,令.
(Ⅰ)写出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com