精英家教网 > 高中数学 > 题目详情

【题目】求出下列函数的定义域,并判断函数的奇偶性:

1;(2

3;(4.

【答案】1)定义域为,偶函数;(2)定义域为R,既不是奇函数,也不是偶函数;(3)定义域为R,奇函数;(4)定义域为,既不是奇函数,也不是偶函数.

【解析】

1)根据指数幂的运算公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可;

2)根据分数指数幂和根式的转化公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可;

3)根据分数指数幂和根式的转化公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可;

4)根据分数指数幂和根式的转化公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可.

解:(1的定义域为.

是偶函数;

2的定义域为R.

,

.

既不是奇函数,也不是偶函数;

3的定义域为R.

,

是奇函数;

4的定义域为

既不是奇函数,也不是偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眼的时间,数据如下表(单位:小时)

甲部门

6

7

8

乙部门

5.5

6

6.5

7

7.5

8

丙部门

5

5.5

6

6.5

7

8.5

(1)求该单位乙部门的员工人数?

(2)若将每天睡眠时间不少于7小时视为睡眠充足,现从该单位任取1人,估计拍到的此人为睡眠充足者的概率;

(3)再从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眼时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

支持

保留

不支持

岁以下

岁以上(含岁)

(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;

(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求至少有一人年龄在岁以下的概率.

(3)在接受调查的人中,有人给这项活动打出的分数如下: ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年11月11日是石室中学周年校庆日,学校数学爱好者社团组织“解题迎校庆,我爱”的活动.其中一题如下:已知数列,其中第一项是,接下来的两项是,再接下来的三项是,依此类推.若该数列前项和为,则求满足,且的倍数条件的整数的个数为( )

A. 10B. 12C. 21D. 60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宁德市某汽车销售中心为了了解市民购买中档轿车的意向,在市内随机抽取了100名市民为样本进行调查,他们月收入(单位:千元)的频数分布及有意向购买中档轿车人数如下表:

月收入

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

频数

6

24

30

20

15

5

有意向购买中档轿车人数

2

12

26

11

7

2

将月收入不低于6千元的人群称为“中等收入族”,月收入低于6千元的人群称为“非中等收入族”.

(Ⅰ)在样本中从月收入在[3,4)的市民中随机抽取3名,求至少有1名市民“有意向购买中档轿车”的概率.

(Ⅱ)根据已知条件完善下面的2×2列联表,并判断有多大的把握认为有意向购买中档轿车与收入高低有关?

非中等收入族

中等收入族

总计

有意向购买中档轿车人数

40

无意向购买中档轿车人数

20

总计

100

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是

A. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关

B. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关

C. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关

D. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点在圆上,直线上圆在点处的切线,过点作圆的切线与交于点.

(Ⅰ)证明为定值,并求动点的轨迹的方程;

(Ⅱ)设过点的直线与曲线分别交于,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为xy.奖励规则如下:

,则奖励玩具一个;

,则奖励水杯一个;

其余情况奖励饮料一瓶.

假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.

)求小亮获得玩具的概率;

)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

同步练习册答案