精英家教网 > 高中数学 > 题目详情
16.若θ是第二象限角,且$cos\frac{θ}{2}-sin\frac{θ}{2}=\sqrt{1-sinθ}$,则$\frac{θ}{2}$是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

分析 根据$cos\frac{θ}{2}-sin\frac{θ}{2}=\sqrt{1-sinθ}$,可得$cos\frac{θ}{2}≥sin\frac{θ}{2}$,θ是第二象限角,即可判断$\frac{θ}{2}$.

解答 解:由题意,∵$cos\frac{θ}{2}-sin\frac{θ}{2}=\sqrt{1-sinθ}$,
∴$cos\frac{θ}{2}≥sin\frac{θ}{2}$,
∵θ是第二象限角,
∴$\frac{θ}{2}$在第一、三象限角.
得$\frac{θ}{2}$是在三象限角.
故选C.

点评 本题主要考查了象限角的判断.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在一次期末数学测试中,唐老师任教班级学生的考试得分情况如表所示:
分数区间[50,70][70,90][90,110][110,130][130,150]
人数28323820
(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;
(2)若学生的成绩大于或等于130分为优秀,小于130分且大于等于90分为合格,小于90分为不及格,若是优秀,学生在期末综合测评中可得到40分,若是合格,学生在期末综合测评中可得到20分,若是不合格,学生在期末综合测评中则扣20分,以频率估计概率,若从大量的学生中随机抽取2人,这2人在数学科目的期末综合测评分数之和记为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从编号为01,02,…,49,50的50个个体中利用下面的随机数表选取5个个体,选取方法从随机数表第1行第5列的数开始由左到右依次抽取,则选出来的第5个个体的编号为(  )
A.14B.07C.32D.43

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若复数z=(x2-3x+2)+(x-1)i为纯虚数,则实数x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的面积为S,角A,B,C所对的边分别为a,b,c
(1)若S=(a+b)2-c2,a+b=4,求sinC的值;
(2)证明:$\frac{{{a^2}-{b^2}}}{c^2}=\frac{{sin({A-B})}}{sinC}$;
(3)比较a2+b2+c2与$4\sqrt{3}S$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=6+4x-x4在[-1,2]上的最大值和最小值分别为(  )
A.f(1)和f(2)B.f(1)和f(-1)C.f(-1)和f(2)D.f(2)和f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,且AD∥BC,∠ABC=90°,AD=3BC.
(I)求证:AB⊥PD;
(II)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.据俄罗斯新罗西斯克2015年5月17日电 记者吴敏、郑文达报道:当地时间17日,参加中俄“海上联合-2015(Ⅰ)”军事演习的9艘舰艇抵达地中海预定海域,混编组成海上联合集群.接到命令后我军在港口M要将一件重要物品用小艇送到一艘正在航行的俄军轮船上,在小艇出发时,轮船位于港口M北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值并说明你的推理过程;
(3)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆的半径为πcm,则120°的圆心角所对的弧长是(  )
A.$\frac{π}{3}$cmB.$\frac{{π}^{2}}{3}$cmC.$\frac{2π}{3}$cmD.$\frac{2{π}^{2}}{3}$cm

查看答案和解析>>

同步练习册答案