精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

【答案】(1)见解析 (2)

【解析】试题分析:()欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;()设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEOAE与平面PDB所的角,在Rt△AOE中求出此角即可

试题解析:(1)证明:四边形ABCD是正方形,ACBD

∴PD⊥AC∴AC⊥平面PDB

平面.

2)解:设AC∩BD=O,连接OE

由()知AC⊥平面PDBO

∴∠AEOAE与平面PDB所的角,

∵ OE分别为DBPB的中点,

OE//PD

RtAOE中,

AE与平面PDB所成的角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过(-1,0)点,且在x=-1处的切线斜率为-1,设数列的前n项Sn=f(n)n∈N*).

(1)求数列的通项公式;

(2)求数列{}前n项的和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是平行四边形,的两个三等分点.

(1)求证平面

(2)若平面平面,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O和点,由圆O外一点P向圆O引切线Q为切点,且有 .

1)求点P的轨迹方程,并说明点P的轨迹是什么样的几何图形?

2)求的最小值;

3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线l过点.

1)若直线l的纵截距和横截距相等,求直线l的方程;

2)若直线l与两坐标轴围成的三角形的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定空间中十个点,其中任意四点不在一个平面上,将某些点之间用线段相连,若得到的图形中没有三角形也没有空间四边形,试确定所连线段数目的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象上两相邻对称轴之间的距离为_______________

)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;

)若动直线的图象分别交于两点,求线段长度的最大值及此时的值.

注:如果选择多个条件分别解答,按第一个解答计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某大河的一段支流,岸线近似满足宽度为7为河中的一个半径为2的小岛,小镇位于岸线上,且满足岸线现计划建造一条自小镇经小岛至对岸的通道(图中粗线部分折线段,右侧),为保护小岛,段设计成与圆相切,设

(1)试将通道的长表示成的函数,并指出其定义域.

(2)求通道的最短长.

查看答案和解析>>

同步练习册答案