精英家教网 > 高中数学 > 题目详情
f(x)=cosxcos(x-θ)-
1
2
cosθ,0<θ<π,f(
π
3
)的值最大,则2f(
3x
2
)在x∈[0,
π
3
]上的最小值是
 
考点:三角函数中的恒等变换应用,三角函数的最值
专题:三角函数的求值,三角函数的图像与性质
分析:由三角函数公式可得f(x)=
1
2
cos(2x-θ),由最值结合θ范围可确定θ的值,从而求得f(x),求得2f(
3x
2
)的函数解析式,根据自变量的取值范围即可求出最小值.
解答: 解:由题意可得f(x)=cosxcos(x-θ)-
1
2
cosθ
=cos2xcosθ+sinxcosxsinθ-
1
2
cosθ
=
1+cos2x
2
cosθ+sinxcosxsinθ-
1
2
cosθ
=
1
2
cos(2x-θ)
又∵当x=
π
3
时f(x)取得最大值,
∴2×
π
3
-θ=2kπ,k∈Z,可得:θ=
3
-2kπ,k∈Z,
又∵0<θ<π,
θ=
3
…6分
∴f(x)=
1
2
cos(2x-
3
),
∵x∈[0,
π
3
],
∴2x-
3
∈[-
3
π
3
],
∴2f(
3x
2
)=cos(3x-
3
)∈[-
1
2
3
2
].
故答案为:-
1
2
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的图象与性质,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=(4-x)0+
16-x2
|x-2|-5
-x3的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求(
x
3
-
3
x
12的展开式的中间一项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α、β∈(
π
2
,π),且tan(π+α)<tan(
5
2
π-β),求证:α+β<
3
2
π.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值
1
4
-1+(
1
6
6
 
1
3
+
3
+
2
3
-
2
-(1.03)0•(-
6
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,若cosA=
3
5
,cosB=
5
13
,则sinC=
 
,C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x-
1
2

(1)求函数f(x)在[0,
π
2
]的最大值和最小值,并给出取得最值时的x值;
(2)设△ABC的内角A、B、C的对边分别为a,b,c,且c=
3
,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为2的正三角形ABC的重心为G,其中M,N分别在AB,AC边上,且
AM
=2
MB
,2
AN
=
NC
,则|
GM
|=
 
|
GN
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C与y轴相交于B1、B2两点,点M是曲线C上,且不同于B1、B2,直线B1M、MB2与x轴分别交于P、Q
(1)若曲线C的方程为
x2
4
+y2=1,求证:|OP|•|OQ|=4;
(2)若曲线C的方程为x2+y2=r2,且|OP|•|OQ|=3,求半径r的值;
(3)对上述曲线外的其他二次曲线,类比第(1)或第(2)题的问题,你能发现什么结论?试解答你提出的结论.

查看答案和解析>>

同步练习册答案