精英家教网 > 高中数学 > 题目详情

【题目】“微信运动”是一个类似计步数据库的公众账号,现从“微信运动”的个好友(男、女各人)中,记录了他们某一天的走路步数,并将数据整理如下表:

0-2000

2001-5000

5001-8000

8001-10000

>10000

男(人数)

2

4

6

10

8

女(人数)

1

7

10

9

3

1)若某人一天的走路步数超过步被系统评定为“积极型”,否则评定为“懈怠型",根据题意完成下面的列联表,并据此判断能否有%的把握认为“评定类型"与“性别“有关?

积极型

懈怠型

总计

男(人数)

女(人数)

总计

2)现从被系统评定为“积极型”好友中,按男女性别分层抽样,共抽出人,再从这人中,任意抽出人发一等奖,求发到一等奖的中恰有一名女性的概率.

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】1)列联表详见解析,没有%的把握认为“评定类型”与“性别”有关;(2

【解析】

1)根据题意填写列联表,计算观测值,对照临界值得出结论;

2)利用分层抽样原理和列举法,即可求出基本事件数和所求的概率值.

解:(1)根据题意填写列联表如下;

积极型

懈怠型

总计

男(人数)

18

12

30

女(人数)

12

18

30

总计

30

30

60

计算

∴没有的把握认为“评定类型“与“性别“有关;

2)按男女性别分层抽样,抽出5人中32女,分别设为

从这5人中任意抽出3人,所有结果为10种,

其中恰有1名女性的基本事件有6种,

故所求的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合,其中,由中的元素构成两个相应的集合:

其中是有序数对,集合中的元素个数分别为

若对于任意的,总有,则称集合具有性质

)检验集合是否具有性质并对其中具有性质的集合,写出相应的集合

)对任何具有性质的集合,证明

)判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,平面平面.

(Ⅰ)设分别为的中点,求证:平面

(Ⅱ)求证:平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面 平面,BC//平面PAD, ,.

求证:(1) 平面

(2)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高中男生中随机选取100名学生,将他们的体重(单位: )数据绘制成频率分布直方图,如图所示.

1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);

2)若要从体重在 内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取3人,记体重在内的人数为,求其分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若对任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形是矩形,且平面平面.

(Ⅰ)求证:平面

(Ⅱ)当二面角的平面角的余弦值为,求这个六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点.

1)求抛物线的顶点坐标;

2)若抛物线轴的交点为,连接,并延长交抛物线于点,求证:

3)将抛物线作适当的平移,得抛物线,若时,恒成立,求得最大值.

查看答案和解析>>

同步练习册答案