精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆,点,过的直线与圆交于点,过做直线平行于点

1)求点的轨迹的方程;

2)过的直线与交于两点,若线段的中点为,且,求四边形面积的最大值.

【答案】1.2

【解析】

1)由题意可得,可得,则的轨迹是焦点为,长轴为的椭圆的一部分,再用待定系数法即可求出方程;

2)由题意设直线方程为,设,联立直线与椭圆的方程,结合韦达定理表示出,可得,设四边形的面积为,则,再根据基本不等式即可求出答案.

解:(1)因为,又因为,所以

所以

所以的轨迹是焦点为,长轴为的椭圆的一部分,

设椭圆方程为

,所以

所以椭圆方程为

又因为点不在轴上,所以

所以点的轨迹的方程为

2)因为直线斜率不为0,设为

,联立整理得

所以

所以

,∴

设四边形的面积为

再令,则单调递增,

所以时,

此时取得最小值,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为A,右焦点为FO是坐标原点,是等腰直角三角形,且周长为.

1)求椭圆的方程;

2)若直线lAF垂直,且交椭圆于BC两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.

(Ⅰ)若为等边三角形,求椭圆的方程;

(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为

1)问该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于

2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

1)求的取值范围;

2)记的极值点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),其部分图像如图所示.

1)求函数的解析式;

2)已知横坐标分别为的三点都在函数的图像上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数的奇偶性,并说明理由;

2)已知不等式上恒成立,求实数的最大值;

3)当时,求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点是四边形的中心,关于直线,下列说法正确的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)讨论函数的单调性;

2)若函数内有极值,试比较的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案