精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{|\begin{array}{l}{2x+3}\end{array}|,-6<x<-1}\\{{x}^{2}+5,-1≤x<1}\\{x,1≤x<3}\end{array}\right.$则f[f(-2)](  )
A.1B.3C.6D.9

分析 由函数f(x)=$\left\{\begin{array}{l}{|\begin{array}{l}{2x+3}\end{array}|,-6<x<-1}\\{{x}^{2}+5,-1≤x<1}\\{x,1≤x<3}\end{array}\right.$,将x=-2代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{|\begin{array}{l}{2x+3}\end{array}|,-6<x<-1}\\{{x}^{2}+5,-1≤x<1}\\{x,1≤x<3}\end{array}\right.$,
∴f[f(-2)]=f(1)=1,
故选A

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.我国是水资源匮乏的国家为节约用水,某市打算出台一项水费政策措施,规定:每一季度每人用水量不超过5吨时,每吨水费收基本价1元,若超过5吨而不超过6吨时,超过部分水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为x吨,应交水费为f(x).
(1)试求出函数f(x)的解析式.
(2)作出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以下四个命题中正确的命题的序号是(1)(3)(4)
(1)已知随机变量X~N(μ,σ2),σ越小,则X集中在μ周围的概率越大.
(2)对分类变量X与Y,它们的随机变量K2的观测值k越小,则“X与Y相关”可信程度越大.
(3)预报变量的值与解释变量和随机误差的总效应有关.
(4)在回归直线方程$\stackrel{∧}{y}$=0.1x+10中,当解释变量x每增加一个单位时,预报变量$\stackrel{∧}{y}$增加0.1个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①函数f(x)=2x-log2x的零点有2个;
②函数y=f(1-x)与函数y=f(1+x)的图象关于直线x=1对称;
③$\sqrt{x-1}$(x-2)≥0的解集为[2,+∞);
④“x<1”是“x<2”的充分不必要条件;
⑤函数y=x3在原点O(0,0)处的切线是x轴.
其中真命题的序号是④⑤(写出所有正确的命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(3x)=4xlog23+333,则f(2)+f(4)+f(8)+…+f(28)=2808.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=$\left\{\begin{array}{l}{a{x}^{2},x≤0}\\{(a-4)x+a-3,x>0}\end{array}\right.$,是定义域上的减函数,则实数a的取值范围的(  )
A.a>0B.a<4C.0<a≤3D.3≤a<4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市区鼓励居民用电,以减少燃气或燃煤对空气造成的污染,并采用分段费的方法计算电费,规定:每月用电不超过100度时,按每度电0.57元计费,每月用电量超过100度时,其中100度仍用原标准计费,超出的部分每度电按0.5元计费,
(1)设每月用电x度时,应缴纳电费y元,写出y与x的函数关系式;
(2)假定某居民第一季度缴纳电费情况如下表:
请你计算,第一季度该户居民共用多少度电?
月份一月二月三月四月
金额76元63元45.6元184.6元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是偶函数,当x<0时,f(x)=2x2-x+1,若当x>0时,f(x)=2x2+x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在椭圆中,a=5,b=4,焦点在x轴上,求椭圆方程.

查看答案和解析>>

同步练习册答案