【题目】已知点,(其中)是曲线上的两点,,两点在轴上的射影分别为点,且.
(1)当点的坐标为时,求直线的方程;
(2)记的面积为,梯形的面积为,求的范围.
科目:高中数学 来源: 题型:
【题目】学校组织高考组考工作,为了搞好接待组委会招募了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表;并要求列联表的独立性检验,能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
喜爱运动 | 不喜爱运动 | 总计 | |
男 |
| ||
女 |
|
| |
总计 |
|
(2)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取名负责翻译工作,则抽出的志愿者中人恰有一人胜任翻译工作的概率是多少?
参考公式:,其中.
参考答数:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在第十五次全国国民阅读调查中,某地区调查组获得一个容量为的样本,其中城镇居民人,农村居民人.在这些居民中,经常阅读的城镇居民人,农村居民人.
(1)填写下面列联表,并判断是否有的把握认为,经常阅读与居民居住地有关?
城镇居民 | 农村居民 | 合计 | |
经常阅读 | |||
不经常阅读 | |||
合计 |
(2)调查组从该样本的城镇居民中按分层抽样抽取出人,参加一次阅读交流活动,若活动主办方从这位居民中随机选取人作交流发言,求被选中的位居民都是经常阅读居民的概率.
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若函数在上是增函数,求正数的取值范围;
(2)当时,设函数的图象与x轴的交点为,,曲线在,两点处的切线斜率分别为,,求证:+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.则下列结论中:
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命题的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.,分别表示甲、乙两班各自5名学生学分的标准差,则_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为 (为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线与恰有一个公共点.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)已知曲线上两点,满足,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com