精英家教网 > 高中数学 > 题目详情

(09年江苏模拟)设函数f(x)=x2-mlnx,h(x)=x2-x+a.

(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;

(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数 a的取值范围;

(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由。

解析:(1)由a=0,f(x)≥h(x)可得-mlnx≥-x 即

,则f(x)≥h(x)在(1,+∞)上恒成立等价于.

求得

时;;当时, 

在x=e处取得极小值,也是最小值,

,故.

(2)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a,在[1,3]上恰有两个相异实根。

令g(x)=x-2lnx,则

时,,当时,

g(x)在[1,2]上是单调递减函数,在上是单调递增函数。

又g(1)=1,g(3)=3-2ln3

∵g(1)>g(3),∴只需g(2)<a≤g(3),

故a的取值范围是(2-2ln2,3-2ln3)

(3)存在m=,使得函数f(x)和函数h(x)在公共定义域上具有相同的单调性

,函数f(x)的定义域为(0,+∞)。

,则,函数f(x)在(0,+∞)上单调递增,不合题意;

,由可得2x2-m>0,解得x>或x<-(舍去)

时,函数的单调递增区间为(,+∞)

单调递减区间为(0, )

而h(x)在(0,+∞)上的单调递减区间是(0,),单调递增区间是(,+∞)

故只需=,解之得m=

即当m=时,函数f(x)和函数h(x)在其公共定义域上具有相同的单调性。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年江苏模拟) 设函数

   (1)写出函数的最小正周期及单调递减区间;

   (2)当时,函数的最大值与最小值的和为,求的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏模拟)设双曲线=1的右顶点为,右焦点为,过点作平行双曲线的一条渐近线的直线与双曲线交于点,则的面积为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏模拟)设的内角,所对的边长分别为,且的值为_________________

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏模拟)设是否空集合,定义,已知B=,则等于___________

查看答案和解析>>

同步练习册答案