精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的方程

1)若方程有两个正根,求:m的取值范围;

2)若方程有两个正根,且一个比2大,一个比2小,求m的取值范围.

【答案】1;(2

【解析】

1)方法一,一元二次方程有两个正根,两根之积、之和均取正值,用韦达定理表示,再加判别式大于等于0即可;方法二,构造函数,转化为二次函数的根的分布问题,要结合二次函数图象来解。由结合二次函数图象且方程有两个正根,可知函数图象开口向下,故只需满足,解不等式组即可;(2)构造函数,由结合二次函数图象且方程有两个正根,可知函数图象开口向下,由方程有两个正根,且一个比2大,一个比2小,可得,解不等式组即可。

方法一,因为方程有两个正根,所以 ,解得。所以,m的取值范围

方法二,令 ,因为 ,方程有两个正根,所以函数的图象一定开口向下,所以

,解得。所以,m的取值范围

2)令 ,因为 ,方程有两个正根,所以函数的图象一定开口向下,所以

,解得 ,所以,m的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆Ox2y29及点C(21),过点C的直线l与圆O交于PQ两点,当OPQ的面积最大时,直线l的方程为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc分别为ABC三个内角ABC的对边,2bcosA=acosC+ccosA

1)求角A的大小;

2)若a=3ABC的周长为8,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知).

(1)求证:数列为等比数列;

(2)若数列满足:

求数列的通项公式;

是否存在正整数n,使得成立?若存在,求出所有n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司一年需购买某种原料400吨,设公司每次都购买吨,每次运费为4万元,一年的总存储费用为万元.

1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?

2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河北保定市上学期期末调研已知点到点的距离比到轴的距离大1

I)求点的轨迹的方程;

II)设直线 ,交轨迹两点, 为坐标原点,试在轨迹部分上求一点,使得的面积最大,并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校社团活动开展有声有色,极大地推动了学生的全面发展,深受学生欢迎,每届高一新生都踊跃报名加入.现已知高一某班60名同学中有4名男同学和2名女同学参加心理社,在这6名同学中,2名同学初中毕业于同一所学校,其余4名同学初中毕业于其他4所不同的学校.现从这6名同学中随机选取2名同学代表社团参加校际交流(每名同学被选到的可能性相同).

(Ⅰ)在该班随机选取1名同学,求该同学参加心理社团的概率;

(Ⅱ)求从6名同学中选出的2名同学代表至少有1名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a11anan1n2n≥2nN*.

1)求数列{an}的通项公式:

2)若对任意的nN*,不等式1≤man≤5恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革方案指出:该省高考考生总成绩将由语文数学英语3门统一高考成绩和学生从思想政治、历史、地理、物理、化学、生物6门等级性考试科目中自主选择3个,按获得该次考试有效成绩的考生(缺考考生或未得分的考生除外)总人数的相应比例的基础上划分等级,位次由高到低分为A、B、C、D、E五等21级,该省的某市为了解本市万名学生的某次选考化学成绩水平,统计在全市范围内选考化学的原始成绩,发现其成绩服从正态分布 ,现从某校随机抽取了名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.

(1)估算该校名学生成绩的平均值(同一组中的数据用该组区间的中点值作代表);

(2)现从该校名考生成绩在的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前名的人数记为,求随机变量的分布列和数学期望.参考数据:若,则.

查看答案和解析>>

同步练习册答案