精英家教网 > 高中数学 > 题目详情

【题目】已知直三棱柱中,,且,点DEF分别为BC中点.

1)求证:平面

2)若,求三棱锥的体积

【答案】1)见解析(2

【解析】

1)连接,在直三棱柱中,易得D中点,又FBC中点,可得,再由线面平行的判定定理证明.

2)在为等腰直角三角形中,根据FBC中点,得到,由直三棱柱得到,从而平面,可得.在面中,由平面几何知识得到,证得平面,所以EF为高,再求得,代入体积公式求解.

1)如图所示:

连接,在直三棱柱中,

侧面是平行四边形,

∵平行四边形对角线互相平分,D中点,

D中点,

FBC中点,∴

平面平面

平面

2为等腰直角三角形,

FBC中点,∴

直三棱柱中,平面ABC平面ABC

,∵

平面

平面

又∵

又∵

平面

平面ADF

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020110日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗体与上次接种无关.

1)求一个接种周期内出现抗体次数的分布列;

2)已知每天接种一次花费100元,现有以下两种试验方案:

①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;

②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.

比较随机变量的数学期望的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于岁的人中随机地抽取人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.

组数

分组

“环保族”人数

占本组的频率

第一组

第二组

第三组

第四组

第五组

1)求的值;

2)根据频率分布直方图,估计这人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);

3)从年龄段在的“环保族”中采取分层抽样的方法抽取人进行专访,并在这人中选取人作为记录员,求选取的名记录员中至少有一人年龄在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,侧面为矩形,.将翻折至,使在平面内.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的直线交抛物线两点.

1)若直线平行于轴,,求抛物线的方程;

2)对于(1)条件下的抛物线,当直线的斜率变化时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,四边形ABCD为平行四边形,且点在底面上的投影H恰为CD的中点.

1)棱BC上存在一点N,使得AD⊥平面,试确定点N的位置,说明理由;

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为.(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为,直线的极坐标方程为.

1)求的直角坐标和 l的直角坐标方程;

2)把曲线上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线上动点,求中点到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形ABCD是平行四边形,.

1)求PC的长;

2)求AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数的定义域是,对任意的,有.时,.给出下列四个关于函数的命题:

①函数是奇函数;

②函数是周期函数;

③函数的全部零点为

④当算时,函数的图象与函数的图象有且只有4个公共点.

其中,真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案