精英家教网 > 高中数学 > 题目详情
已知数列{an}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an} 前n项和为Sn,且满足S3=a4,a3+a5=2+a4
(1)求数列{an}的通项公式;
(2)求数列{an}前2k项和S2k
(3)在数列{an}中,是否存在连续的三项am,am+1,am+2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m的值;若不存在,说明理由.
分析:(1)等差数列和等比数列的通项公式即可得出;
(2)利用等差数列的通项公式即可得出;
(3)在数列{an}中,仅存在连续的三项a1,a2,a3,按原来的顺序成等差数列,此时正整数m的值为1.分类讨论am=a2k,am=a2k-1,证明不成立即可.
解答:解:(1)设等差数列的公差为d,等比数列的公比为q,
则a1=1,a2=2,a3=1+d,a4=2q,a5=1+2d.
∵S3=a4,∴1+2(1+d)=2q,即4+d=2q,
又a3+a5=2+a4,∴1+d+1+2d=2+2q,即3d=2q,解得d=2,q=3.
∴对于k∈N*,有a2k-1=1+(k-1)•2=2k-1,
an=
n,n=2k-1
2•3
n
2
-1
,n=2k
,k∈N*
(2)S2k=(a1+a3+…+a2k-1)+(a2+a4+…+a2k)=[1+3+…+(2k-1)]+2(1+3+32+…+3k-1)=
(1+2k-1)k
2
+
2(1-3k)
1-3
=k2-1+3k

(3)在数列{an}中,仅存在连续的三项a1,a2,a3,按原来的顺序成等差数列,此时正整数m的值为1,下面说明理由
若am=a2k,则由am+am+2=2am+1,得2×3k-1+2×3k=2(2k+1).
化简得4•3k-1=2k+1,此式左边为偶数,右边为奇数,不可能成立.
若am=a2k-1,则由am+am+2=2am+1,得(2k-1)+(2k+1)=2×2×3k-1
化简得k=3k-1
Tk=
k
3k-1
(k∈N*),则Tk+1-Tk=
k+1
3k
-
k
3k-1
=
1-2k
3k
<0

因此,1=T1>T2>T3>…,故只有T1=1,此时K=1,m=2×1-1=1.
综上,在数列{an}中,仅存在连续的三项a1,a2,a3,按原来的顺序成等差数列,此时正整数m的值为1.
点评:本题考查了等差数列与等比数列的通项公式性质及其前n项和公式等基础知识与基本方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•襄阳模拟)已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N*)展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设f(n)=
4
9an+12
,求cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
),求
1
c1c2
+
1
c2c3
+…+
1
cncn+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•襄阳模拟)已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N* )展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设f(n)=
4
9an+12
,求f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
);
(3)证明:
a2
(a2-4)(a3-4)
+
a3
(a3-4)(a4-4)
+…+
an
(an-4)(an+1-4)
1
256
(1-
1
4n2-3n
).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市万州二中高三(下)5月月考数学试卷(理科)(解析版) 题型:解答题

已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N* )展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设f(n)=,求f(0)+f()+f()+…+f();
(3)证明:++…+(1-).

查看答案和解析>>

科目:高中数学 来源:2009年湖北省襄樊市高三三月调考数学试卷(文科)(解析版) 题型:解答题

已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N*)展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设f(n)=,求cn=f(0)+f()+f()+…+f(),求++…+的值.

查看答案和解析>>

科目:高中数学 来源:2009年湖北省襄樊市高三三月调考数学试卷(理科)(解析版) 题型:解答题

已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N* )展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设f(n)=,求f(0)+f()+f()+…+f();
(3)证明:++…+(1-).

查看答案和解析>>

同步练习册答案