精英家教网 > 高中数学 > 题目详情
8.在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$动点M的轨迹为曲线C.
(1)求C的方程及其离心率;
(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为$\frac{\sqrt{3}}{2}$,求△AOB面积的最大值.

分析 (1)由$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$得x0=x,y0=$\sqrt{3}$y,即可得到椭圆的方程及其离心率;
(2)由于已知坐标原点O到直线l的距离为$\frac{\sqrt{3}}{2}$,故求△AOB面积的最大值的问题转化为求线段AB的最大值的问题,由弦长公式将其表示出来,再判断最值即可得到线段AB的最大值.

解答 解:(Ⅰ)设M(x,y),P(x0,y0),由$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$得x0=x,y0=$\sqrt{3}$y …..(2分)
因为x02+y02=3,所以x2+3y2=3,即$\frac{{x}^{2}}{3}+{y}^{2}$=1,
其离心率e=$\frac{\sqrt{6}}{3}$.…..(4分)
(Ⅱ)当AB与x轴垂直时,|AB|=$\sqrt{3}$.(5分)
②当AB与x轴不垂直时,
设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),
由已知$\frac{|m|}{\sqrt{1+{k}^{2}}}=\frac{\sqrt{3}}{2}$,得${m}^{2}=\frac{3}{4}({k}^{2}+1)$.(6分)
把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0,
∴x1+x2=$\frac{-6km}{3{k}^{2}+1}$,x1x2=$\frac{3({m}^{2}-1)}{3{k}^{2}+1}$(7分)
∴k≠0,|AB|2=(1+k2)(x2-x12=3+$\frac{12}{9{k}^{2}+\frac{1}{{k}^{2}}+6}$≤4,
当且仅当9k2=$\frac{1}{{k}^{2}}$,即k=$±\frac{\sqrt{3}}{3}$时等号成立,此时|AB|=2.(10分)
当k=0时,|AB|=$\sqrt{3}$.(11分)
综上所述:|AB|max=2,
此时△AOB面积取最大值$S=\frac{1}{2}|AB{|}_{max}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$(12分)

点评 本题考查直线与圆锥曲线的综合问题,解答本题关键是对直线AB的位置关系进行讨论,可能的最值来,本题由于要联立方程求弦长,故运算量比较大,又都是符号运算,极易出错,做题时要严谨认真.利用弦长公式求弦长,规律固定,因此此类题难度降低不少,因为有此固定规律,方法易找,只是运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.某空间几何体的三视图如图所示,则该几何体的表面积是$32+8\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.i是虚数单位,复数z=a+i(a∈R)满足z2+z=1-3i,则|z|=(  )
A.$\sqrt{2}$或$\sqrt{5}$B.2或5C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}的前n项和为Sn,若a1009=1,则S2017(  )
A.1008B.1009C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F为双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为$\frac{32}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x5+ax3+bx-8,且f(-2017)=10,则f(2017)等于(  )
A.-26B.-18C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在Rt△ABC中,已知A(-2,0),直角顶点$B(0,-2\sqrt{2})$,点C在x轴上.
(1)求Rt△ABC外接圆的方程;
(2)求过点(0,3)且与Rt△ABC外接圆相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=xlnx,(x>0).
(1)求函数f(x)的单调区间;
(2)设F(x)=ax2+f'(x),(a∈R),F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,集合A={x|x<a或x>2-a,(a<1)},集合B={x|$tan(πx-\frac{π}{3})=-\sqrt{3}\}$.
(Ⅰ)求集合∁UA与B;
(Ⅱ)当-1<a≤0时,集合C=(∁UA)∩B恰好有3个元素,求集合C.

查看答案和解析>>

同步练习册答案