精英家教网 > 高中数学 > 题目详情
17.如图,在四棱锥P-ABCD中,底面ABCD是菱形,侧面PBC是直角三角形,∠PCB=90°,点E是PC的中点,且平面PBC⊥平面ABCD.
求证:
(1)AP∥平面BED;
(2)BD⊥平面APC.

分析 (1)取AC,BD的交点O,连结OE,根据中位线定理得出OE∥AP,故而AP∥平面BDE;
(2)由平面PBC⊥平面ABCD得出PC⊥平面ABCD,故而PC⊥BD,由菱形性质得出BD⊥AC,即可证明BD⊥平面PAC.

解答 解:(1)设AC∩BD=O,连结OE.因为ABCD是菱形,
所以O为AC的中点.
又因为点E是PC的中点,
所以OE是△APC的中位线.
所以AP∥OE.
又OE?平面BED,AP?平面BED,
所以AP∥平面BED.
注:不写条件OE?平面BED,AP?平面BED,各扣 1 分.
(2)因为平面PBC⊥平面ABCD,PC?平面PBC,平面PBC∩平面ABCD=BC,PC⊥BC,
所以PC⊥平面ABCD,
所以PC⊥BD.
因为底面ABCD是菱形,
所以BD⊥AC.
又AC∩PC=C,
所以BD⊥平面APC.

点评 本题考查了线面平行的判定,线面垂直的性质与判定,考查了数形结合思想和空间想象能力以及推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知直线l1:x-y+1=0和l2:x-y+3=0,则l1与l2之间距离是(  )
A.$2\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{2}cost\\ y=-1+\sqrt{2}sint\end{array}\right.$,(t为参数),在以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos({θ+\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,A,B两点的极坐标为$({1,\frac{π}{2}}),({1,π})$.
(1)求圆C的普通方程和直线L的直角坐标方程;
(2)点P是圆C上任意一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,$b=\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,则$\frac{y-2}{x-4}$的最大值为$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.焦点在x轴上,长、短半轴长之和为10,焦距为$4\sqrt{5}$,则椭圆的标准方程为(  )
A.$\frac{x^2}{6}+\frac{y^2}{4}=1$B.$\frac{x^2}{16}+\frac{y^2}{36}=1$C.$\frac{x^2}{36}+\frac{y^2}{16}=1$D.$\frac{x^2}{49}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,A1B1=B1C1=1.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD是正方形,PA⊥平面ABCD,EB∥PA,AB=PA=4,EB=2,F为PD的中点.
(1)求证:AF⊥PC;
(2)求证:BD∥平面PEC;
(3)求锐角二面角D-PC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个正三棱柱的侧棱长和底面边长都相等,它的俯视图如图所示,左视图是一个矩形,棱柱的体积为2$\sqrt{3}$,则这个三棱柱的表面积为(  )
A.2$\sqrt{3}$B.12C.2$\sqrt{3}$+12D.2$\sqrt{3}$+6

查看答案和解析>>

同步练习册答案