精英家教网 > 高中数学 > 题目详情
13.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号第一组第二组第三组第四组第五组
分组[50,60)[60,70)[70,80)[80,90)[90,100]
(Ⅰ)求图中a的值;
(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?

分析 (1)由频率分布图中小矩形面积和为1,能求出a的值.
(2)由直方图,得第3组人数为30人,第4组人数为20人,第5组人数为10人,利用分层抽样在60名学生中抽取6名学生,第3、4、5组分别抽取3人、2人、1人.由此利用列举法能求出第4组的2位同学至少有一位同学入选的概率.

解答 解:(1)由题意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,
所以a=0.005.------(4分)
(2)由直方图,得:第3组人数为:0.3×100=30人,
第4组人数为:0.2×100=20人,
第5组人数为:0.1×100=10人,
所以利用分层抽样在60名学生中抽取6名学生,
每组分别为:第3组:$\frac{30}{60}×6=3$人,第4组:$\frac{20}{60}×6=2$人,第5组:$\frac{10}{60}×6=1$人,
所以第3、4、5组分别抽取3人、2人、1人.
设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,
第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能如下:
(A1,A2),(A1,A3),(A1,A3),(A2,A3),(A1,B1),
(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),
(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),
其中恰有1人的分数不低于9(0分)的情形有:
(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),共5种,
所以其中第4组的2位同学至少有一位同学入选的概率为$\frac{5}{13}=\frac{1}{3}$.------(12分)

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.-7<a<24B.a=7 或 a=24C.a<-7或 a>24D.-24<a<7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若$\overrightarrow{AF}=\overrightarrow{FB}$,$\overrightarrow{BA}•\overrightarrow{BC}=12$,则抛物线的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(sinx,2cosx),$\overrightarrow{b}$=(5$\sqrt{3}$cosx,cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{a}$|2-$\frac{7}{2}$.
(1)求函数f(x)的最小正周期;
(2)若x∈($\frac{2π}{3}$,$\frac{11π}{12}$)时,f(x)=-3,求cos2x的值;
(3)若cosx≥$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x)=m有且仅有一个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知平行四边形ABCD中,AB=2,E为AB的中点,且△ADE是等边三角形,沿DE把△ADE折起至A1DE的位置,使得A1C=2.

(1)F是线段A1C的中点,求证:BF∥平面A1DE;
(2)求证:A1D⊥CE;
(3)求点A1到平面BCDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lg$\frac{1+ax}{1-x}$(a>0)为奇函数,函数g(x)=$\frac{2}{{x}^{2}}$+b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;
(Ⅲ)当x∈[$\frac{1}{3}$,$\frac{1}{2}$]时,关于x的不等式f(1-x)≤lgg(x)有解,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow{b}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$-2.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=$\sqrt{3}$,c=1,且f(A)=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆x2+y2=4,则圆上到直线3x-4y+5=0的距离为1的点个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,1),$\overrightarrow b$=(cosx,$\sqrt{3}$sin2x).
(Ⅰ)求函数f(x)的最小正周期及单调增区间;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案