精英家教网 > 高中数学 > 题目详情

为了治理“沙尘暴”,西部某地区政府经过多年努力,到2009年底,将当地沙漠绿化了40%,从2010年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg2=0.3,最后结果精确到整数).

至少需要4年才能使绿化面积超过50%


解析:

设该地区总面积为1,2006年底绿化面积为a1=,经过n年后绿洲面积为an+1,设2009年底沙漠面积为b1,经过n年后沙漠面积为bn+1,则a1+b1=1,an+bn=1.

依题意an+1由两部分组成:一部分是原有绿洲an减去被侵蚀的部分8%·an的剩余面积92%·an,另一部分是新绿化的12%·bn,所以

an+1=92%·an+12%(1-an)=an+,即an+1-=(an-),

是以-为首项,为公比的等比数列,

则an+1=-n,

∵an+1>50%,∴-n,

n,n>log==3.

则当n≥4时,不等式n恒成立.

所以至少需要4年才能使绿化面积超过50%.

练习册系列答案
相关习题

科目:高中数学 来源:志鸿系列训练必修一数学北师版 题型:013

为了治理沙尘暴,A市政府大力加强环境保护,其周边草场绿色植被面积每年都比上一年增长10.4%,那么经过x年绿色植被的面积为y,则y=f(x)的图像大致为

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了治理“沙尘暴”,西部某地区政府经过多年努力,到1998年底,将当地沙漠绿化了40%.从1999年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠.问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg2=0.3,最后结果精确到整数)?

查看答案和解析>>

同步练习册答案