精英家教网 > 高中数学 > 题目详情
已知函数的最大值为0,其中
(1)求的值;
(2)若对任意,有成立,求实数的最大值;
(3)证明:
(1) ;(2);(3)详见解析.

试题分析:(1)根据函数的特征可对函数求导,由导数等于零,可求出函数的零点,利用导数与函数单调性的关系:导数大于零,函数在对应区间上单调增,导数小于零,函数在对应区间上单调减,就可用表示出函数的最大值进而求出;(2)先定性分析的范围,发现当时,易得,即可得出矛盾,进而只有小于零,对函数求导后得出导数为零的,再根据与零的大小关系,可发现要以为界进行讨论,又由结合函数的单调性不难得出只有时不等式 恒成立; (3)当时,不等式显然成立; 当时,首先结合(1)中所求函数得出求和的表达式,这样与所要证不等式较近了,再结合(2)中所证不等式,取的最大值,即,两式相结合,最后用放缩法可证得所要证明不等式.
试题解析:(1)定义域为
,由=0,得 .        1分
变化时,变化情况如下

(-a,1-a)
1-a
(1-a,+∞)

+
0
-


极大值

因此,处取得最大值,故 ,所以 .       3分
(2)当时,取,故不合题意;当时,令,令,得,①时,恒成立,因此单调递增,从而对任意的,总有,即恒成立.故符合题意;②当时,对于,故内单调递减,因此取,即不成立,故不合题意,综上,的最大值为.
(3)当时,不等式左边右边,不等式成立.
时,
   10分
在(2)中取

 =
   .
综上,          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数其中为自然对数的底数, .
(1)设,求函数的最值;
(2)若对于任意的,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,恒过定点
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
⑴求函数的单调区间;
⑵如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若1是函数的一个零点,求函数的解析表达式;
(2)试讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知都是定义在R上的函数,,则关于的方程有两个不同实根的概率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:如果函数在区间上存在,满足则称函数在区间上的一个双中值函数,已知函数是区间上的双中值函数,则实数的取值范围是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则下列说法正确的是(     )
A.有且只有一个零点B.至少有两个零点
C.最多有两个零点D.一定有三个零点

查看答案和解析>>

同步练习册答案