【题目】已知函数(,),且的解集为;数列的前项和为,对任意,满足.
(1)求的值及数列的通项公式;
(2)已知数列的前项和为,满足,,求数列的前项和;
(3)已知数列满足,若对恒成立,求实数的取值范围.
【答案】(1),,(2),(3)或
【解析】
(1)利用不等式的解集与方程的关系,可求得函数的解析式,代入已知条件,可得,即可求得的值;根据即可求得数列的通项公式;
(2)利用递推公式,递推后作差可求得数列的通项公式.则数列为等差数列与等比数列乘积形式,结合错位相减法即可求得数列的前项和;
(3)代入数列的通项公式,可求得数列的通项公式.利用作差法可知数列的单调性,结合单调性求得的最大值.代入解析式即可得一元二次不等式,解不等式即可求得的取值范围.
(1)函数(,),且的解集为
可知,是方程的两根,
则,解得
所以
由,代入可得
当时,;
当时,,检验n=1时符合.
综上所述,,
(2)由,则,,
由
则
所以
当时,;
则,解得
则是以为首项,2为公比的等比数列,则,
由则①
②由①-②可得
则,
(3)由,则
当时,则
当时,,则
当时,,则
综上所述,的最大值为
由对恒成立,
则
解不等式可得或
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表作之一,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于6米的弧田,按照上述经验公式计算所得弧田面积约为( )
A.12平方米B.16平方米C.20平方米D.24平方米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的菱形,,,平面平面,点为棱的中点.
(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;
(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设,分别是正方体的棱上两点,且,,其中正确的命题为( )
A.三棱锥的体积为定值
B.异面直线与所成的角为
C.平面
D.直线与平面所成的角为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在单位正内任取一点P,以PA、PB、PC为边生成.
(1)当分别为锐角三角形、直角三角形、钝角三角形时,求出点P的轨迹.
(2)证明:当的周长取最小值时,面积取最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com