精英家教网 > 高中数学 > 题目详情

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;
(2)求剪下的铁皮三角形的面积的最大值.

(1)三角形铁皮的面积为;(2)剪下的铁皮三角形的面积的最大值为.

解析试题分析:(1)利用锐角三角函数求出的长度,然后以为底边、以为高,利用三角形面积公式求出三角形的面积;(2)设,以锐角为自变量将的长度表示出来,并利用面积公式求出三角形的面积的表达式,利用之间的关系,令将三角形的面积的表达式表示为以为自变量的二次函数,利用二次函数的单调性求出三角形的面积的最大值,但是要注意自变量的取值范围作为新函数的定义域.
试题解析:(1)由题意知


,即三角形铁皮的面积为
(2)设,则


,由于,所以
则有,所以
,所以

而函数在区间上单调递增,
故当时,取最大值,即
即剪下的铁皮三角形的面积的最大值为.
考点:1.三角形的面积;2.三角函数的最值;3.二次函数的最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

张林在李明的农场附近建了一个小型工厂,由于工厂生产须占用农场的部分资源,因此李明每年向张林索赔以弥补经济损失并获得一定净收入.工厂在不赔付农场的情况下,工厂的年利润(元)与年产量(吨)满足函数关系.若工厂每生产一吨产品必须赔付农场元(以下称为赔付价格).
(Ⅰ)将工厂的年利润(元)表示为年产量(吨)的函数,并求出工厂获得最大利润的年产量;
(Ⅱ)若农场每年受工厂生产影响的经济损失金额(元),在工厂按照获得最大利润的产量进行生产的前提下,农场要在索赔中获得最大净收入,应向张林的工厂要求赔付价格是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,当时,
(1)证明:
(2)若成立,请先求出的值,并利用值的特点求出函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数   是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上为增函数,求实数的取值范围;
(Ⅱ)当时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某公司生产品牌服装的年固定成本是10万元,每生产千件,须另投入2 7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且 
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大?(注:年利润=年销售收入 年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的定义域和值域均为,求实数的值;
(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(1)当,求的取值范围;
(2)若对任意恒成立,求实数的最小值.

查看答案和解析>>

同步练习册答案