精英家教网 > 高中数学 > 题目详情
通项公式为an=an2+n的数列{an},若满足a1<a2<a3<a4<a5,且an>an+1对n≥8恒成立,则实数a的取值范围是
 
分析:an-an+1=(an2+n)-(an+12+n+1)=-a2n+1-1>0(n≥8),a2n+1≤-1,a< -
1
2n+1
,所以a<-
1
17
,an-an-1>0,a>-
1
2n+1
,a>-
1
9
.由此可知答案.
解答:解:an+1-an=an+12+n+1-an2-n=2na+a+1
当n≤4时,2na+a+1>0
a>-
1
2n+1
≥-1/9
当n≥8时,2na+a+1<0
a<-
1
2n+1
≤-
1
17

因此,-
1
9
<a<-
1
17

答案:-
1
9
<a<-
1
17
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=n2-n-30.
(1)求数列的前三项,60是此数列的第几项.
(2)n为何值时,an=0,an>0,an<0.
(3)该数列前n项和Sn是否存在最值?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n-1,数列{bn}的前n项和为Tn,且满足Tn=1-bn
(1)求{bn}的通项公式;
(2)在{an}中是否存在使得
1an+25
是{bn}中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大兴区一模)已知数列{an}的各项均为正整数,且a1<a2<…<an,设集合Ak={x|x=
n
i=1
 
λiai,λi=-1或λi=0,或λi=1}(1≤k≤n).
性质1:若对于?x∈Ak,存在唯一一组λi,(i=1,2,…,k)使x=
n
i=1
 
λiai成立,则称数列{an}为完备数列,当k取最大值时称数列{an}为k阶完备数列.
性质2:若记mk=
n
i=1
 
ai(1≤k≤n),且对于任意|x|≤mk,k∈Z,都有x∈AK成立,则称数列P{an}为完整数列,当k取最大值时称数列{an}为k阶完整数列.
性质3:若数列{an}同时具有性质1及性质2,则称此数列{an}为完美数列,当K取最大值时{an}称为K阶完美数列;
(Ⅰ)若数列{an}的通项公式为an=2n-1,求集合A2,并指出{an}分别为几阶完备数列,几阶完整数列,几阶完美数列;
(Ⅱ)若数列{an}的通项公式为an=10n-1,求证:数列{an}为n阶完备数列,并求出集合An中所有元素的和Sn
(Ⅲ)若数列{an}为n阶完美数列,试写出集合An,并求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式;  
(3)是否存在a和b,使得bm=3m+2(m∈N*)?如果存在,求a和b的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式.

查看答案和解析>>

同步练习册答案