【题目】已知函数.
(1)当时,求在上的值域;
(2)求在区间的最小值,并求的最大值.
【答案】(1)[﹣5,20);(2)g(a),g(a)的最大值为.
【解析】
(1)函数在(﹣3,2)上单调递减,在(2,3]上单调递增,可得函数f(x)在区间(﹣3,3]上的值域;
(2)由于二次函数的对称轴为x=1﹣a,分①当1﹣a﹣3、②当﹣3<1﹣a<3、③当1﹣a≥3三种情况,分别利用二次函数的性质求得函数的最小值g(a)并利用一次函数、二次函数的性质求解g(a)的最大值.
(1)当a=﹣1时,f(x)=x2﹣4x﹣1=(x﹣2)2﹣5,
函数在(﹣3,2)上单调递减,在(2,3]上单调递增,
∴x=2,f(x)=﹣5,x=﹣3,f(x)=20,x=3,f(x)=﹣4,
∴函数f(x)在区间[﹣3,3]上的值域是[﹣5,20);
(2)∵函数f(x)=x2+2(a﹣1)x+a=[x+(a﹣1)]2﹣1+3a﹣a2 的对称轴为x=1﹣a,
①当1﹣a≤﹣3,即a≥4时,函数y在[﹣3,3]上是增函数,
当x=﹣3时,函数y取得最小值为15﹣5a;
②当﹣3<1﹣a<3,即﹣2<a<4时,当x=1﹣a时,函数y取得最小值为﹣1+3a﹣a2;
③当1﹣a≥3,即a≤﹣2时,函数y在[﹣3,3]上是减函数,故当x=3时,数y取得最小值为3+7a.
综上,
g(a),
又当a≥4时,g(a)15﹣5a≤﹣5,当﹣2<a<4时,g(a)﹣1+3a﹣a2,当a≤﹣2时,g(a)≤﹣11,
综上g(a)的最大值为.
科目:高中数学 来源: 题型:
【题目】对于定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.
(1)若函数是“基函数,”生成的,求实数的值;
(2)试利用“基函数,”生成一个函数,且同时满足:①是偶函数;②在区间上的最小值为.求函数的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①三点确定一个平面;
②在空间中,过直线外一点只能作一条直线与该直线平行;
③若平面α上有不共线的三点到平面β的距离相等,则α∥β;
④若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg)其频率分布直方图如下:
(1) 记表示事件“旧养殖法的箱产量低于50kg”,估计的概率;
(2)填写下面联表,并根据列联表判断是否有%的把握认为箱产量与养殖方法有关:
箱产量 | 箱产量 | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(cos2ωx-sin2ωx,sinωx),b=(,2cosωx),设函数f(x)=a·b(x∈R)的图象关于直线x=对称,其中ω为常数,且ω∈(0,1).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若将y=f(x)图象上各点的横坐标变为原来的,再将所得图象向右平移个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在上有且只有一个实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若F(x)=f[f(x)+1]+m有两个零点x1 , x2 , 则x1x2的取值范围是( )
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com