精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)
(1)当a=1时,求函数f(x)的最值;
(2)求函数f(x)的单调区间.

【答案】
(1)解:函数f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)的定义域是(1,+∞)

当a=1时,f(x)=x2﹣x﹣ln(x﹣1),

当x∈ 时,f(x)<0,

所以f (x)在 为减函数.

当x∈ 时,f(x)>0,

所以f (x)在 为增函数,

则当x= 时,f(x)有极小值,也就是最小值.

所以函数f (x)的最小值为 =


(2)解:

若a≤0时,则 ,f(x)= >0在(1,+∞)恒成立,

所以f(x)的增区间为(1,+∞).

若a>0,则 ,故当 ,f′(x)= ≤0,

时,f(x)= ≥0,

所以a>0时f(x)的减区间为 ,f(x)的增区间为


【解析】(1)首先求出函数的定义域,把a=1代入函数解析式后,求出函数的导函数,由导函数等于0求出函数的极值点,结合定义域可得函数在定义域内取得最值的情况,从而求出函数的最值.(2)把原函数求导后,对参数a进行分类,根据a的不同取值得到导函数在不同区间内的符号,从而得到原函数的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)图象上不同两点A(x1 , y1),B(x2 , y2)处的切线的斜率分别是kA , kB , 规定φ(A,B)= (|AB|为线段AB的长度)叫做曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题: ①函数y=x3图象上两点A与B的横坐标分别为1和﹣1,则φ(A,B)=0;
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
③设点A,B是抛物线y=x2+1上不同的两点,则φ(A,B)≤2;
④设曲线y=ex(e是自然对数的底数)上不同两点A(x1 , y1),B(x2 , y2),则φ(A,B)<1.
其中真命题的序号为 . (将所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是 ,且每题正确完成与否互不影响.
(Ⅰ)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(Ⅱ)请分析比较甲、乙两人谁的面试通过的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:
(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);
(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:

等级

一等品

二等品

三等品

重量(g)

[165,185]

[155,165)

[145,155)

若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X,求x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,则实数a的取值范围是(
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程. .

(1)若是从0、1、2、3四个数中任取的一个数, 是从0、1、2三个数中任取的一个数,求上述方程有实数根的概率;

(2)若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线 的极坐标方程是 ,圆 的极坐标方程是
(1)求 交点的极坐标;
(2)设 的圆心, 交点连线的中点,已知直线 的参数方程是 为参数),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 为参数),以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .直线l过点 .
(1)若直线l与曲线C交于A,B两点,求 的值;
(2)求曲线C的内接矩形的周长的最大值.

查看答案和解析>>

同步练习册答案