精英家教网 > 高中数学 > 题目详情

【题目】平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么(
A.甲是乙成立的充分不必要条件
B.甲是乙成立的必要不充分条件
C.甲是乙成立的充要条件
D.甲是乙成立的非充分非必要条件

【答案】B
【解析】解:命题甲是:“|PA|+|PB|是定值”,
命题乙是:“点P的轨迹是以A.B为焦点的椭圆
∵当一个动点到两个定点距离之和等于定值时,
再加上这个和大于两个定点之间的距离,
可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,
而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,
∴甲是乙成立的必要不充分条件
故选B.
【考点精析】认真审题,首先需要了解椭圆的概念(平面内与两个定点的距离之和等于常数(大于)的点的轨迹称为椭圆,这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知( n的展开式中,第三项的系数为144.
(1)求该展开式中所有偶数项的二项式系数之和;
(2)求该展开式的所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在R上可导,其导函数为f′(x),若f(x)满足 >0,f(2﹣x)=f(x)e22x则下列判断一定正确的是(
A.f(1)<f(0)
B.f(3)>e3f(0)
C.f(2)>ef(0)
D.f(4)<e4f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为.现采用计算机做模拟实验来估计该选手获得优秀的概率: 用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数:

907 966 191 925 271 932 812 458 569 683

031 257 393 527 556 488 730 113 537 989

据此估计,该选手投掷 1 轮,可以拿到优秀的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明. 下面是赵爽的弦图及注文,弦图是一个以勾股之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用股+(股-勾)朱实+黄实=弦实,化简,得勾2+股2=弦2. 设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. 134 B. 866 C. 300 D. 500

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点与抛物线的焦点重合,直线与以原点为圆心,以椭圆的离心率为半径的圆相切.

(Ⅰ)求该椭圆的方程;

(Ⅱ)设点坐标为,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,短轴长为 ,过右焦点F的直线l与C相交于A,B两点.O为坐标原点.
(1)求椭圆C的方程;
(2)若点P在椭圆C上,且 = + ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=ax2+bx(a<0)通过点(1,2),且其图象与y=﹣x2+2x的图象有二个交点(如图所示).

(1)求y=ax2+bx与y=﹣x2+2x所围成的面积S与a的函数关系;
(2)当a,b为何值时,S取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

同步练习册答案