精英家教网 > 高中数学 > 题目详情
已知圆,圆,动圆与已知两圆都外切.
(1)求动圆的圆心的轨迹的方程;
(2)直线与点的轨迹交于不同的两点的中垂线与轴交于点,求点的纵坐标的取值范围.
(1)动圆的圆心的轨迹的方程为:;(2)

试题分析:(1)两圆外切,则两圆圆心之间的距离等于两圆的半径之和,由此得将两式相减得:
由双曲线的定义可得轨迹的方程.
(2)将直线的方程代入轨迹的方程,利用根与系数的关系得到的中点的坐标(用表示),从而得的中垂线的方程。再令得点的纵坐标(用表示).根据的范围求出点的纵坐标的取值范围.
本小题中要利用及与双曲线右支相交求的范围,这是一个易错之处.
试题解析:(1)已知两圆的圆心、半径分别为
设动圆的半径为,由题意知:

所以点在以为焦点的双曲线的右支上,其中,则
由此得的方程为:                                4分
(2)将直线代入双曲线方程并整理得:
的中点为
依题意,直线与双曲线右支交于不同两点,故


的中垂线方程为:
得:                             12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆是其左右焦点,离心率为,且经过点.
(1)求椭圆的标准方程;
(2)若分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;
(3)若为椭圆上动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线.过点的直线两点.抛物线在点处的切线与在点处的切线交于点

(Ⅰ)若直线的斜率为1,求
(Ⅱ)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设轴交于点,不同的两点上(也不重合),且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的右焦点,圆轴交于两点,是椭圆与圆的一个交点,且 
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆相切的直线的另一交点为,且的面积为,求椭圆的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为抛物线的焦点,抛物线上点满足

(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于两点,两点的横坐标均不为,连结并延长交抛物线于两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于四点,则四边形面积的最大值与最小值之差为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案