精英家教网 > 高中数学 > 题目详情
函数,当0<x<1时,下列式子大小关系正确的是( )
A.f2(x)<f(x2)<f(x)
B.f(x2)<f2(x)<f(x)
C.f(x)<f(x2)<f2(x)
D.f(x2)<f(x)<f2(x)
【答案】分析:由0<x<1得到x2<x,要比较f(x)与f(x2)的大小,即要判断函数是增函数还是减函数,可求出f′(x)利用导函数的正负决定函数的增减性.即可比较出f(x)与f(x2)大小.
解答:解:根据0<x<1得到x2<x,而f′(x)=
因为(lnx)2>0,所以根据对数函数的单调性得到在0<x<1时,lnx-1<0,所以f′(x)<0,函数单调递减.
所以f(x2)>f(x),根据排除法A、B、D错,C正确.
故选C
点评:考查学生利用导数研究函数的单调性,以及会利用函数的单调性判断函数值的大小,在做选择题时,可采用排除法得到正确答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设a=f(
6
5
),b=f(
3
2
)
c=f(
5
2
)
,则(  )
A、a<b<c
B、b<a<c
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在定义域(-1,1)上是减函数,当0<x<1时f(x)=-x3-x2
①求函数f(x)的解析式;
②若有f(1-a)+f(1-2a)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx,设a=f(
6
5
),b=f(
3
2
),c=f(
5
2
)
,则a,b,c从小到大的顺序为
c<a<b
c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为周期是2的奇函数,当0<x<1时,f(x)=x(x+1),则当5<x<6时,f(x)的表达式为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省沈阳二中等重点中学协作体高考预测数学试卷06(理科)(解析版) 题型:选择题

设f(x)为周期是2的奇函数,当0<x<1时,f(x)=x(x+1),则当5<x<6时,f(x)的表达式为( )
A.(x-5)(x-4)
B.(x-6)(x-5)
C.(x-6)(5-x)
D.(x-6)(7-x)

查看答案和解析>>

同步练习册答案