精英家教网 > 高中数学 > 题目详情

【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.

(Ⅰ)若小店一天购进16份,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;

(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:

日需求量

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

以100天记录的各需求量的频率作为各需求量发生的概率.

(i)小店一天购进16份这种食品,表示当天的利润(单位:元),求的分布列及数学期望;

(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?

【答案】(Ⅰ);(Ⅱ)(i)答案见解析;(ii)17份.

【解析】试题分析

(Ⅰ) 分两种情况分别求得利润,写成分段的形式即可得到所求.(Ⅱ)(i) 由题意知的所有可能的取值为62,71,80,分别求出相应的概率可得分布列和期望; (ii)由题意得小店一天购进17份食品时,利润的所有可能取值为58,67,76,85,分别求得概率后可得的分布列和期望,比较的大小可得选择的结论

试题解析

(Ⅰ)当日需求量时,利润

当日需求量时,利润

所以关于的函数解析式为

(Ⅱ)(i)由题意知的所有可能的取值为62,71,80,

并且

的分布列为:

X

62

71

80

P

0.1

0.2

0.7

元.

(ii)若小店一天购进17份食品,表示当天的利润(单位:元),那么的分布列为

Y

58

67

76

85

P

0.1

0.2

0.16

0.54

的数学期望为元.

由以上的计算结果可以看出

即购进17份食品时的平均利润大于购进16份时的平均利润.

所以小店应选择一天购进17份.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是圆内一个定点,是圆上任意一点.线段的垂直平分线和半径相交于点.

(Ⅰ)当点在圆上运动时,点的轨迹是什么曲线?并求出其轨迹方程;

(Ⅱ)过点作直线与曲线交于两点,点关于原点的对称点为,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,则这个几何体的体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)证明:存在唯一实数,使得直线和曲线相切;

(2)若不等式有且只有两个整数解,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱台被过点的平面截去一部分后得到如图所示的几何体,其下底面四边形是边长为2的菱形,平面.

(Ⅰ)求证:平面平面

(Ⅱ)若与底面所成角的正切值为2,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是平行四边形,分别是的中点.

)证明:平面平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=x+b与函数f(x)=ln x的图象交于两个不同的点A,B,其横坐标分别为x1,x2,x1<x2.

(1)b的取值范围;

(2)x2≥2,证明x1·<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018湖北七市(州)教研协作体3月高三联考已知椭圆 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.

I)求椭圆的方程;

II)如图,若直线 与椭圆交于 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.

【答案】I;(II

【解析】试题分析:(1)根据题意可得 故斜率为由直线与直线垂直,可得,因为点是线段的中点,∴点的坐标是

代入直线得连立方程即可得 ;(2)∵四边形为平行四边形,∴,设 ,∴ ,得,将点坐标代入椭圆方程得

到直线的距离为,利用弦长公式得EF,则平行四边形的面积为

.

解析:(1)由题意知,椭圆的左顶点,上顶点,直线的斜率

因为点是线段的中点,∴点的坐标是

由点在直线上,∴,且

解得

∴椭圆的方程为.

(2)设

代入消去并整理得

∵四边形为平行四边形,∴

,将点坐标代入椭圆方程得

到直线的距离为

∴平行四边形的面积为

.

故平行四边形的面积为定值.

型】解答
束】
21

【题目】已知函数 .

(1)当时,讨论函数的单调性;

(2)当时,求证:函数有两个不相等的零点 ,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为过点的直线的参数方程为为参数),直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2),的值.

查看答案和解析>>

同步练习册答案