精英家教网 > 高中数学 > 题目详情
6.已知α是第二象限角,tan(π+α)=-$\frac{8}{15}$,则cos(α-$\frac{π}{2}$)=(  )
A.$\frac{1}{8}$B.-$\frac{1}{8}$C.$\frac{8}{17}$D.-$\frac{8}{17}$

分析 由条件利用同角三角函数的基本关系、诱导公式求得cos(α-$\frac{π}{2}$)的值.

解答 解:∵α是第二象限角,tan(π+α)=tanα=-$\frac{8}{15}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{8}{15}$,
再根据sin2α+cos2α=1,可得sinα=$\frac{8}{17}$,
则cos(α-$\frac{π}{2}$)=cos($\frac{π}{2}$-α)=sinα=$\frac{8}{17}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x,则f(log49)的值为(  )
A.-3B.-$\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.a∈Z,a2称为完全平方数,则一个完全平方数被5除的余数是0,或1,或4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=loga(x2-2ax)在区间[4,5]上是增函数,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x||2x-1|<3},B={x|x2-(a+2)x+2a≤0}.
(1)若a=1,求A∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,C上的动点M到两点F1,F2的距离之和为10,且cos∠F1MF2的最小值为$\frac{7}{25}$.
(1)求椭圆C的方程;
(2)设P为椭圆C的长轴上的一个动点,过P且斜率为k的直线交椭圆于A,B两点,是否存在常数k,使|PA|2+|PB|2为定值?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆的中心在原点,焦点在x轴,长、短轴长之比为2:1,若圆x2+y2-4y+3=0上的点P到此椭圆上点Q的最大值为1+$\frac{2\sqrt{21}}{3}$,求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.($\sqrt{{x}^{\frac{1}{3}}{x}^{-\frac{2}{3}}}$)${\;}^{-\frac{8}{5}}$可以简化为 (  )
A.x${\;}^{-\frac{1}{3}}$B.x${\;}^{\frac{2}{5}}$C.x${\;}^{\frac{4}{15}}$D.x${\;}^{-\frac{4}{15}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设△ABC的内角A、B、C所对的边分别为a、b、c,若cosB+cosC=$\frac{b+c}{a}$,则这个三角形的形状是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不确定

查看答案和解析>>

同步练习册答案