A. | $\frac{1}{8}$ | B. | -$\frac{1}{8}$ | C. | $\frac{8}{17}$ | D. | -$\frac{8}{17}$ |
分析 由条件利用同角三角函数的基本关系、诱导公式求得cos(α-$\frac{π}{2}$)的值.
解答 解:∵α是第二象限角,tan(π+α)=tanα=-$\frac{8}{15}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{8}{15}$,
再根据sin2α+cos2α=1,可得sinα=$\frac{8}{17}$,
则cos(α-$\frac{π}{2}$)=cos($\frac{π}{2}$-α)=sinα=$\frac{8}{17}$,
故选:C.
点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | -3 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x${\;}^{-\frac{1}{3}}$ | B. | x${\;}^{\frac{2}{5}}$ | C. | x${\;}^{\frac{4}{15}}$ | D. | x${\;}^{-\frac{4}{15}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 不确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com