精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,函数f(x)=|x+ ﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是

【答案】(﹣∞,
【解析】解:由题可知|x+ ﹣a|+a≤5,即|x+ ﹣a|≤5﹣a,所以a≤5,
又因为|x+ ﹣a|≤5﹣a,
所以a﹣5≤x+ ﹣a≤5﹣a,
所以2a﹣5≤x+ ≤5,
又因为1≤x≤4,4≤x+ ≤5,
所以2a﹣5≤4,解得a≤
所以答案是:(﹣∞, ).
【考点精析】本题主要考查了函数的最值及其几何意义和绝对值不等式的解法的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某风景区水面游览中心计划国庆节当日投入之多3艘游船供游客观光,过去10年的数据资料显示每年国庆节当日客流量X(单位:万人)都大于1,并把客流量分成三段整理得下表:

国庆节当日客流量X

1<X<3

3≤X≤5

X>5

频数

2

4

4

以这10年的数据资料记录的隔断客流量的频率作为每年客流量在隔断发生的概率,且每年国庆节当日客流量相互独立.
(1)求未来连续3年国庆节当日中,恰好有1年国庆节当日客流量超过5万人的概率;
(2)该水面游览中心希望投入的游船尽可能使用,但每年国庆节当日游船最多使用量:(单位:艘)受当日客流量X(单位:万人)的限制,其关联关系如下表:

国庆节当日客流量X

1<X<3

3≤X≤5

X>5

游船最多使用量

1

2

3

若某艘游船国庆节当日使用,则水面游览中心国庆节当日可获得利润3万元,若某艘游船国庆节当日不使用,则水面游览中心国庆节当日亏损0.5万元,记Y(单位:万元)表示该水面游览中心国庆节当日获得总利润,当Y的数学期望最大时称水面游览中心在国庆节当日效益最佳,问该水面游览中心的国庆节当日应投入多少艘游船才能使该水面游览中心在国庆节当日效益最佳?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为(  )

A. 平行 B. 垂直

C. 相交但不垂直 D. 位置关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500/分钟和200/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量ξi满足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2 ,则( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2
B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2
D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在三棱锥中,分别是的中点,

(1) 求证:平面

(2) 求异面直线所成角的余弦值;

(3) 求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC﹣A1B1C1中,所有棱长均为1,则点B1到平面ABC1的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm , cm+1 , cm+2 , …是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)某圆锥的侧面展开图为圆心角为,面积为的扇形,求该圆锥的表面积和体积.

(2)已知直三棱柱的底面是边长为的正三角形,且该三棱柱的外接球的表面积为,求该三棱柱的体积.

查看答案和解析>>

同步练习册答案