【题目】如图,已知BD为圆锥AO底面的直径,若,C是圆锥底面所在平面内一点,,且AC与圆锥底面所成角的正弦值为.
(1)求证:平面平面ACD;
(2)求二面角的平面角的余弦值.
【答案】(1)证明见解析
(2)
【解析】
(1)首先找到AC与圆锥底面所成角,求出,可得,结合圆锥的性质,可证明平面AOC,进而可得平面平面ACD;
(2)解法一:建立空间直角坐标系,求出平面ACD的一个法向量和平面ABD的一个法向量,通过夹角公式,可求得两法向量的夹角,进而得到二面角的平面角的余弦值;解法二:过点O作交于F.过F作交DC于H,连接HO,
得为二面角的平面角,通过三角形的边角关系求出的余弦.
(1)证明:由及圆锥的性质,
所以为等边三角形,圆O所在平面,
所以,是AC与底面所成角,
又AC与底面所成的角的正弦值为,
在中,,,
由,,
在中,,
所以,
圆锥的性质可知:圆O所在平面,
因为圆O所在平面,所以,
又AO,平面AOC,所以平面AOC,
又平面ACD,
故平面平面ACD;
(2)解法一:在圆O所在平面过点O作BD的垂线交圆O于点E,以O为坐标原点,OE为x轴,OD为y轴,OA为z轴,建立如图空间直角坐标系,
由题可知,,,,
由,,
所以,
设平面ACD的一个法向量为,
因为,,
所以
取,则,
平面ABD的一个法向量为,
所以,
二面角的平面角的余弦值为.
解法二:过点O作交于F.过F作交DC于H,连接HO,
所以为二面角的平面角,
在中,因为,,
所以,,
因为,
所以,即
则,
故C是HD的中点,
所以,
在中,,
即,
所以.
科目:高中数学 来源: 题型:
【题目】已知圆,动圆与圆外切,且与直线相切,该动圆圆心的轨迹为曲线.
(1)求曲线的方程
(2)过点的直线与抛物线相交于两点,抛物线在点A的切线与交于点N,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】边长为的等边三角形内任一点到三边距离之和为定值,则这个定值为;推广到空间,棱长为的正四面体内任一点到各面距离之和为___________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P—ABC中,平面PAC⊥平面ABC,AB=BC,PA⊥PC.点E,F,O分别为线段PA,PB,AC的中点,点G是线段CO的中点.
(1)求证:FG∥平面EBO;
(2)求证:PA⊥BE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为a,∠D=60°,点H为DC边中点,现以线段AH为折痕将△DAH折起使得点D到达点P的位置且平面PHA⊥平面ABCH,点E,F分别为AB,AP的中点.
(1)求证:平面PBC∥平面EFH;
(2)若三棱锥P﹣EFH的体积等于,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com