精英家教网 > 高中数学 > 题目详情

【题目】中,角所对的边分别为.

1)若边的中点,求证: ;

2)若,求面积的最大值.

【答案】(1)详见解析;(2)1.

【解析】

1)证法一:根据边的中点,可以得到向量等式,平方,再结合余弦定理,可以证明出等式

证法二:分别在中,利用余弦定理求出的表达式,利用,可以证明出等式

2)解法一:解法一:记面积为.由题意并结合(1

所证结论得:,利用已知

,再结合基本不等式,最后求可求出面积的最大值;

解法二:利用余弦定理把表示出来,结合重要不等式,再利用三角形面积公式可得

,令设,利用辅助角公式,可以求出的最大值,即可求出面积的最大值.

1)证法一:由题意得

由余弦定理得

将②代入①式并化简得

证法二:在中,由余弦定理得

中,由余弦定理得

,∴

,故

2)解法一:记面积为.由题意并结合(1

所证结论得:

又已知

,当时,等号成立,故

面积的最大值为1

解法二:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一只袋中装有编号为1,2,3,…,n的n个小球,n≥4,这些小球除编号以外无任何区别,现从袋中不重复地随机取出4个小球,记取得的4个小球的最大编号与最小编号的差的绝对值为ξn , 如ξ4=3,ξ5=3或4,ξ6=3或4或5,记ξn的数学期望为f(n).
(1)求f(5),f(6);
(2)求f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足a1 , 2a2 , a3+6成等差数列,且a42=9a1a5
(1)求数列{an}的通项公式;
(2)设bn=( an+1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥中,中点,平面平面

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣1+ (a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求不等式的解集;

(2)若关于的不等式能成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

【答案】(1)对称轴为,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.

(1)

,则

的对称轴为,最小正周期

(2)当时,

因为单调递增,在单调递减,

取最大值,在取最小值,

所以

所以

【点睛】

本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.

型】解答
束】
21

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高中毕业班有男生900人,女生600人,学校为了对高三学生数学学习情况进行分析,从高三年级按照性别进行分层抽样,抽取200名学生成绩,统计数据如表所示:

分数段(分)

[50,70)

[70,90)

[90,110)

[110,130)

[130,150)

总计

频数

20

40

70

50

20

200


(1)若成绩90分以上(含90分),则成绩为及格,请估计该校毕业班平均成绩及格学生人数;
(2)如果样本数据中,有60名女生数学成绩合格,请完成如下数学成绩与性别的列联表,并判断是否有90%的把握认为“该校学生的数学成绩与性别有关”.

女生

男生

总计

及格人数

60

不及格人数

总计

参考公式:K2=

P(K2≥k0

0.10

0.050

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正项等比数列{an}中, ,a6+a7=3,则满足a1+a2+…+an>a1a2…an的最大正整数n的值为

查看答案和解析>>

同步练习册答案