精英家教网 > 高中数学 > 题目详情
13.关于t的不等式t2-4t-m<0有解,则实数m的取值范围是m>-4.

分析 根据一元二次不等式与二次函数的关系,利用判别式列出不等式求出m的取值范围.

解答 解:关于t的不等式t2-4t-m<0有解,
∴△=(-4)2-4•(-m)>0,
解得m>-4,
∴实数m的取值范围是m>-4.
故答案为:m>-4.

点评 本题考查了一元二次不等式与二次函数的关系和应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2且F1F2|=2,点P(1,$\frac{3}{2}$)在该椭圆上.
(Ⅰ)求椭圆C的方程及其离心率e;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的面积为$\frac{12\sqrt{2}}{7}$,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.元旦前夕,某校高三某班举行庆祝晚会,人人准备了才艺,由于时间限制不能全部展示,于是找四张红色纸片和四张绿色纸片上分别写1,2,3,4,确定由谁展示才艺的规则如下:
①每个人先分别抽取红色纸片和绿色纸片各一次,并将上面的数字相加的和记为X;
②当X≤3或X≥6时,即有资格展现才艺;当3<X<6时,即被迫放弃展示.
(1)请你写出红绿纸片所有可能的组合(例如(红2,绿3),(红3,绿2));
(2)求甲同学能取得展示才艺资格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别F1,F2,点$P({-1,\frac{3}{2}})$是椭圆C的一点,满足$\overrightarrow{PF{\;}_1}•\overrightarrow{P{F_2}}=\frac{9}{4}$.
(I)求椭圆C的方程.
(II)已知O为坐标原点,设A、B是椭圆E上两个动点,$\overrightarrow{PA}+\overrightarrow{PB}=λ\overrightarrow{PO}({0<λ<4,λ≠2})$.求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若$\overrightarrow{AB}•\overrightarrow{BC}=-2,|{\overrightarrow{BA}-\overrightarrow{BC}}|=\sqrt{2}$,则△ABC的面积的最大值为(  )
A.5B.3C.$\frac{5}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设抛物线C:y2=2px(p>0)的焦点F,其准线与x轴相交于点Q,过点F倾斜角为锐角θ的直线交抛物线于A,B两点,若∠QBF=90°,则cosθ=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线x2=2py(p>0)上一点M(4,y0)到焦点F的距离|MF|=$\frac{5}{4}$y0,则焦点F的坐标为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式x2-1≥0的解集为(  )
A.{x|-1≤x≤1}B.{x|-1<x<1}C.{x|x≥1或x≤-1}D.{x|x>1或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{37}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案