精英家教网 > 高中数学 > 题目详情

【题目】已知集合M是具有下列性质的函数的全体:存在实数对,使得对定义域内任意实数x都成立.

1)判断函数,是否属于集合;

2)若函数具有反函数,是否存在相同的实数对,使得同时属于集合若存在,求出相应的;若不存在,说明理由;

3)若定义域为的函数属于集合,且存在满足有序实数对;当时,的值域为,求当时函数的值域.

【答案】12)不存在实数对,使得同时属于集合M.见解析(3

【解析】

(1)根据已知中集合的定义,分别判断两个函数是否满足条件,即可求得答案;

(2)假定,求出相应的值,得到矛盾,即可求得答案;

(3)利用题中的新定义,列出两个等式恒成立;将x代替,两等式结合得到函数值的递推关系;用不完全归纳的方法求出值域.

(1)当时,

,其值不为常数,

,

时,,

时,,

故存在实数对,使得对定义域内任意实数x都成立,

;

(2)若函数具有反函数,且,

,

,解得:,

此时,不存在反函数,

故不存在实数对,使得同时属于集合M.

(3)函数,且存在满足条件的有序实数对,

于是,,

替换得:,

时,,,

时,.

又由得:,

,即,

可得:.

时,,

时,,

……

依此类推可知时,,

时,,

综上所述,时,,

时,,

综上所述,当时函数的值域为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,直线交圆两点,过点的平行线交于点.

1)证明为定值,并写出点的轨迹方程;

2)设点的轨迹为曲线,直线两点,过点且与直线垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求函数的单调区间;

如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为,且对任意的实数都有是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用二次法求方程3x+3x-8=0在(12)内近似根的过程中,已经得到f1)<0f1.5)>0f1.25)<0,则方程的根落在区间(  )

A. B. C. D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花元购买了一台新型联合收割机,每年用于收割可以收入万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用(元)与使用年数的关系为:,已知第二年付费元,第五年付费元.

(1)试求出该农机户用于维修保养的费用(元)与使用年数的函数关系;

(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们可以把看作每天的"进步率都是1%,一年后是;而把看作每天的落后率都是1%,一年后是.利用计算工具计算并回答下列问题:

1)一年后进步的是落后的多少倍?

2)大约经过多少天后进步的分别是落后10倍、100倍、1000倍?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分) 已知P32),一直线过点P

若直线在两坐标轴上截距之和为12,求直线的方程;

若直线xy轴正半轴交于AB两点,当面积为12时求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:

(1)用分层抽样的方法在岁年龄段的专业技术人员中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至少有人的学历为研究生的概率;

(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取个人,其中岁以下人,岁以上人,再从这个人中随机抽取出人,此人的年龄为岁以上的概率为,求的值.

查看答案和解析>>

同步练习册答案