精英家教网 > 高中数学 > 题目详情

【题目】已知⊙H被直线x-y-1=0,x+y-3=0分成面积相等的四个部分,且截x轴所得线段的长为2

(I)求⊙H的方程;

()若存在过点P(0,b)的直线与⊙H相交于MN两点,且点M恰好是线段PN的中点,求实数b的取值范围

【答案】12

【解析】试题分析:I的方程为由题意可知圆心一定是两直线的交点,可得交点为,所以. x轴所得线段的长为2,所以.,即可得到⊙H的方程;

II法一:如图, 的圆心,半径

过点N的直径,连结.

由题可得是线段的中点等价于圆上存在一点使得的长等于的直径”.

由此得到实数b的取值范围

法二:如图, 的圆心,半径,连结

于点,并设.

由题意得所以

又因为,所以,由此得到实数b的取值范围

试题解析:I的方程为

因为被直线分成面积相等的四部分,

所以圆心一定是两直线的交点,

易得交点为,所以.

x轴所得线段的长为2,所以.

所以的方程为.

II法一:如图, 的圆心,半径

过点N的直径,连结.

不重合时,

又点是线段的中点

重合时,上述结论仍成立.

因此,是线段的中点等价于圆上存在一点使得的长等于的直径”.

由图可知,即,即.

显然,所以只需,即,解得.

所以实数的取值范围是.

法二:如图, 的圆心,半径,连结

于点,并设.

由题意得

所以

又因为,所以

代入整理可得

因为,所以,,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 平面 ,且 的中点.

Ⅰ)求证:

Ⅱ)求平面与平面所成的锐二面角的余弦值.

Ⅲ)在棱上是否存在一点,使得直线与平面所成的角是.若存在,指出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线过抛物线焦点,且与抛物线交于 两点,以线段为直径的圆与抛物线准线的位置关系是( )

A. 相离 B. 相交 C. 相切 D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=a(x-5)2+6lnx,其中a∈R,曲线yf(x)在点(1,f(1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;

(2)求过点的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为 ,经测量米, 米, 米,

(I)求的长度;

(Ⅱ)若环境标志的底座每平方米造价为元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 是棱PD的中点,且

I)求证: Ⅱ)求二面角的大小;

Ⅲ)若上一点,且直线与平面成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年9月3日,抗战胜利71周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、拥待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这个环节(可参加多个,也可都不参加)的情况及其概率如下表所示:

(Ⅰ)若m=2n,则从这60名抗战老兵中按照参加纪念活动的环节数分层抽取6人进行座谈,求从参加纪念活动环节数为1的抗战老兵中抽取的人数;

(Ⅱ)某医疗部门决定从(Ⅰ)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 底面为正方形,已知 ,点 为线段 上任意一点(不含端点),点 在线段 上,且

(1)求证:

(2)若 为线段 中点,求直线 与平面 所成的角的余弦值.

查看答案和解析>>

同步练习册答案