精英家教网 > 高中数学 > 题目详情
命题“若过双曲线
x2
3
-y2=1的一个焦点F作与x轴不垂直的直线交双曲线于A、B两点,线段AB的垂直平分线交X轴于点M则
|AB|
|FM|
为定值,且定值为
3

(1)试类比上述命题,写出一个关于椭圆C:
X2
25
+
Y2
9
=1的类似的正确命题,并加以证明;
(2)试推广(1)中的命题,给出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不证明).
分析:(1)关于椭圆C的类似命题是:过椭圆
x2
25
+
y2
9
=1
的一个焦点F2(4,0)作与x轴不垂直的直线交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值为
5
2

证明:设直线l为:y=k(x-4),当k=0时,l与x轴重合,|AB|=10,|FM|=4,
|AB|
|FM
=
5
2
.当k≠0时,由
x2
25
+
y2
9
=1
y=k(x-4)
,得(25k2+9)x2-8×25k2+25(16k2-9)=0,由根的判别式和韦达定理知AB的垂直平分线方程为:y+
36k
9+25k2
=-
1
k
(x-
4×25k2
9+25k2
)
,由此能够证明
|AB|
|FM|
=
5
2

(2)过圆锥曲线E的一个焦点F作与x轴不垂直的直线交曲线E于A、B两点,线段AB的垂直平分线交x轴于点M,由此知则
|AB|
|FM|
为定值
2
e
解答:解:(1)关于椭圆C的类似命题是:
过椭圆
x2
25
+
y2
9
=1
的一个焦点F2(4,0)作与x轴不垂直的直线交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值为
5
2

证明:由于l与x轴不垂直,设直线l为:y=k(x-4),
①当k=0时,l与x轴重合,|AB|=10,|FM|=4,
|AB|
|FM
=
5
2

②当k≠0时,由
x2
25
+
y2
9
=1
y=k(x-4)

消去y,得(25k2+9)x2-8×25k2+25(16k2-9)=0,
△=(8×25k22-4×25(25k2+9)(16k2-9)=4×25×92(k2+1),
设A(x1,y1),B(x2,y2),
AB中点N(x0,y0),
x1+x2=
8×25k2
9+25k2

x0=
4×25k2
9+25k2
y0=k(x0-4)=4k(
25k2
9+25k2
-1)
=
-36k
9+25k2

AB的垂直平分线方程为:y+
36k
9+25k2
=-
1
k
(x-
4×25k2
9+25k2
)

令y=0,解得x=
64k2
9+25k2

M(
64k2
9+25k2
,0)

|FM|=|4-xm| =
36(1+k2)
9+25k2

|AB|=
(1+k2)[(x1+x2)2-4x1x2]

=
18×5(1+k2)
9+25k2

|AB|
|FM|
=
5
2

(2)过圆锥曲线E的一个焦点F作与x轴不垂直的直线交曲线E于A、B两点,
线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值为
2
e
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
x2
4
-y2=1
有且只有一个公共点,这样的直线有3条;
④过双曲线x2-
y2
2
=1
的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线x2-
y2
2
=1
和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有
①②④
①②④
.(请写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①命题P:
x-2
x2+2x-3
≤0
;则¬P命题是;
x-2
x2+2x-3
>0

②(1+kx210(k为正整数)的展开式中,x16的系数小于90,则k的值为1;
③从总体中抽取的样本(x1,y1),(x2,y2)…,(xn,yn).若记
.
x
=
1
n
n
i=1
xi
.
y
=
1
n
n
i=1
yi
,则回归直线
y
=bx+a必过点(
.
x
.
y
);
④过双曲线x2-
y2
4
=1
的右焦点作直线交双曲线于A、B两点,若弦长|AB|=8,则这样的直线恰好有3条;其中正确的序号是
②③④
②③④
(把你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①双曲线
x2
16
-
y2
9
=1
与椭圆
x2
49
+
y2
24
=1
有相同的焦点;
②在平面内,设A、B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
④过双曲线x2-
y2
2
=1
的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为
①④
①④
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是______.(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案