精英家教网 > 高中数学 > 题目详情

如果命题“(pq)”是假命题,则下列说法正确的是(  )

(A)pq均为真命题

(B)pq至少有一个为真命题

(C)pq均为假命题

(D)pq至少有一个为假命题

 

【答案】

B

【解析】(pq)是假命题,

pq为真命题,

pq至少有一个为真命题.

故选B.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:函数f(x)=lg(x2-4x+a2)的定义域为R;命题q:?m∈[-1,1],不等式a2-5a-3≥
m2+8
恒成立.如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

p:方程
x2
a
-
y2
1-a
=1
表示双曲线;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程
x2
4-k
+
y2
1-k
=1
表示焦点在x轴上的双曲线; 命题Q:
a
=(2,-1,k),
b
=(1,0,1-k)
的夹角为锐角,如果命题“P∨Q”为真,命题“P∧Q”为假.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=x2-2ax-1在区间[-1,1]内不单调;命题q:当x∈(0,+∞)时,不等式x2-ax+1>0恒成立.如果命题p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

同步练习册答案