精英家教网 > 高中数学 > 题目详情
已知点M是抛物线y2=2px(p>0)位于第一象限部分上的一点,且点M与焦点F的距离|MF|=2p,则点M的坐标为(  )
A、(
3p
2
3
p)
B、(
3p
2
-
3
p)
C、(
3p
2
±
3
p)
D、(
3
p,
3p
2
分析:设M(x0,y0)根据定义点M与焦点F的距离等于M到准线的距离得出x0+
p
2
=2P,即可求出x0,然后代入抛物线方程求出y0即可求出坐标.
解答:解:根据定义,点M与准线的距离也是2P,
设M(x0,y0),则M与准线的距离为:x0+
p
2
∴x0+
p
2
=2P,x0=
3
2
p

∴y0=
3
P,
∴点M的坐标 (
3
2
p
3
P)
故选A.
点评:本题考查了抛物线的定义和性质,解题的关键是根据定义得出点M与焦点F的距离等于M到准线的距离,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是抛物线y2=8x上的动点,F为抛物线的焦点,点A在圆C:(x-3)2+(y+1)2=1上,则|AM|+|MF|的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,若以|MF|为直径作圆,则这个圆与y轴的关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,若以|MF|为直径作圆,则这个圆与y轴的关系是
相切
相切

查看答案和解析>>

同步练习册答案