精英家教网 > 高中数学 > 题目详情
3.有下列四个命题:
①已知A,B,C,D是空间任意四点,则$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=0;
②若两个非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$满足$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,则$\overrightarrow{AB}$‖$\overrightarrow{CD}$;
③分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量;
④对于空间的任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),则P,A,B,C四点共面.
其中正确命题有②④.

分析 对4个命题分别进行判断,即可得出结论.

解答 解:①已知A,B,C,D是空间任意四点,则$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=$\overrightarrow{0}$,不正确;
②若两个非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$满足$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,则$\overrightarrow{AB}$‖$\overrightarrow{CD}$,正确;
③分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量,不正确;
④对于空间的任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),则P,A,B,C四点共面,正确.
故答案为②④.

点评 本题考查空间向量中的运算,考查空间向量基本定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知a,b是实数,且e<a<b,其中e是自然对数的底数,则ab与ba的大小关系是ab>ba

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线3x+4y+m=0向左平移2个单位,再向上平移3个单位后与圆x2+y2=1相切,则m=23或13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求与椭圆$\frac{x^2}{16}+\frac{y^2}{25}=1$有相同的焦点,且两准线间的距离为$\frac{10}{3}$的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)计算:$\sqrt{9}-\sqrt{2}×\root{3}{2}×\root{6}{2}$
(2)已知x+x-1=3(x>0),求x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{m}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{n}$=(1,sin2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题P:函数y=sin$\frac{π}{2}$x在x=a处取到最大值;命题q:直线x-y+2=0与圆(x-3)2+(y-a)2=8相切;则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断函数 f(x)=x2 在R上的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列各式的值.
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-0.30-16${\;}^{-\frac{3}{4}}$; 
 (2)4${\;}^{lo{g}_{4}5}$-lne5+lg500+lg2.

查看答案和解析>>

同步练习册答案