精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=$\left\{\begin{array}{l}(3a-1)x+4a,\;(x<1)\\ \frac{a}{x},\;x≥1\end{array}$是(-∞,+∞)上的减函数,则a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$\frac{1}{6}≤a<\frac{1}{3}$D.$0<a<\frac{1}{3}$

分析 根据分段函数单调性的性质建立不等式关系进行求解即可.

解答 解:∵f(x)是减函数,
∴$\left\{\begin{array}{l}{3a-1<0}\\{a>0}\\{3a-1+4a≥a}\end{array}\right.$,即$\left\{\begin{array}{l}{a<\frac{1}{3}}\\{a>0}\\{a≥\frac{1}{6}}\end{array}\right.$,
即$\frac{1}{6}≤a<\frac{1}{3}$,
故选:C.

点评 本题主要考查分段函数单调性的判断和应用,根据分段函数单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,$\frac{3π}{4}$),求sinθ•cosθ,sin2θ,cos2θ,sinθ,cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式lg(2x-1)-lg3<0的解集为($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(x3+$\frac{1}{x\sqrt{x}}$)9的展开式中的常数项为84.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项和Sn=10n-n2,数列{bn}的每一项都有bn=|an|,则数列{bn}的前10项和T10=50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}的前n项和为Sn,且${a_1}=1,{S_{n+1}}=3{S_n}+n+1,n∈{N^*}$.
(Ⅰ)求证:数列$\left\{{{a_n}+\frac{1}{2}}\right\}$是等比数列;
(Ⅱ)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,设数列{bn}的前n项和Tn,n∈N*,证明:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数y=loga(x+b)(a>0,a≠1)的图象过两点(-1,0)和(0,$\frac{1}{2}$),则实数a=4,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设A={y|y=x2+1,x∈R},$B=\left\{{x\left|y\right.=\left.{\sqrt{x-3}}\right\}}\right.$,则A∩B=[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=(x+a)(|x-a+1|+|x-3|)-2x+4a的图象是中心对称图形,则实数a的值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步练习册答案