精英家教网 > 高中数学 > 题目详情
已知:四棱锥S-ABCD的底面是边长为2的正方形,点S,A,B,C,D均在半径为
3
的同一半球面上,则当四棱锥S-ABCD的体积最大时,底面ABCD的中心与顶点S之间的距离是
 
考点:球内接多面体
专题:计算题,空间位置关系与距离
分析:求出球心到平面的距离,然后判断底面ABCD的中心与顶点S之间的距离即可.
解答: 解:四棱锥S-ABCD的底面是边长为2的正方形,点S,A,B,C,D均在半径为
3
的同一半球面上,则当四棱锥S-ABCD的体积最大时,顶点S与底面ABCD的中心的连线经过球的中心,此时四棱锥是正四棱锥,底面中心与顶点S之间的距离,就是球的半径和球心与底面中心连线的长度之差.
球心到底面中心的距离为:
3-2
=1.
所求距离为:
3
-1.
故答案为:
3
-1.
点评:本题考查球的内接体,几何体的高的求法,考查空间想象能力以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线
y2
a2
-
x2
3
=1的两个焦点分别为F1、F2,离心率为2.
(Ⅰ)求此双曲线的渐近线l1、l2的方程;
(Ⅱ)若A、B分别为l1、l2上的点,且2|AB|=5|F1F2|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;
(Ⅲ)过点N(1,0)能否作出直线l,使l与双曲线交于P、Q两点,且
OP
OQ
=0.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A、36π
B、8π
C、
9
2
π
D、
27
8
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上的曲线C及点P,在C上任取一点Q,定义线段PQ长度的最小值为点P到曲线C的距离,记作d(P,C).若曲线C1表示直线x=-
1
2
,曲线C2表示射线y=0(x≥
1
2
),则点集{P|d(P,C1)=d(P,C2)}所表示的图形是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

由幂函数y=x
1
2
和幂函数y=x3图象围成的封闭图形面积为(  )
A、
1
12
B、
1
4
C、
1
3
D、
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[1,5]上任取一个数m,则函数y=x2-4x-2(0≤x≤m)的值域为[-6,-2]的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用“五点法”画函数f(x)=Asin(ωx+ϕ)+k(A>0,ω>0,|ϕ|<
π
2
)在一个周期内的图象,列表并填入数据得到下表:
xx1
π
6
x2
3
x3
ωx+ϕ0
π
2
π
2
f(x)y13y2-1y3
(1)求函数f(x)的解析式;
(2)三角形ABC中,角A,B,C所对的边分别是a,b,c,若f(B)=2,b=4,acos2
C
2
+ccos2
A
2
=6,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(3,5),B(6,9),且|
AM
|=3|
MB
|,M是直线AB上一点,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,E为DC的中点,AE与BD交于点E,AB=
2
,AD=1,且
MA
MB
=-
1
6
,则
AB
AD
=
 

查看答案和解析>>

同步练习册答案