精英家教网 > 高中数学 > 题目详情

【题目】抛物线的焦点为,已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为( )

A. B. C. D.

【答案】A

【解析】

|AF|=a,|BF|=b,连接AFBF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b2ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.

|AF|=a,|BF|=b,连接AFBF

由抛物线定义,得|AF|=|AQ|,|BF|=|BP|

在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b

由余弦定理得,

|AB|2a2+b2﹣2abcos120°=a2+b2+ab

配方得,|AB|2=(a+b2ab

又∵ab

∴(a+b2ab≥(a+b2a+b2a+b2

得到|AB|a+b).

所以,即的最大值为

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,侧面是正方形, 侧面 ,点的中点.

(1)求证: //平面

(2)若,垂足为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆 的离心率为,两条准线之间的距离为.

(1)求椭圆的标准方程;

(2)已知椭圆的左顶点为,点在圆上,直线与椭圆相交于另一点,且的面积是的面积的倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题px0∈(1,+∞),使得5+|x0|=6.qx∈(0,+∞),+81xa

(1)若a=9,判断命题¬ppq,(¬p)∧(¬q)的真假,并说明理由;

(2)设命题rx0Rx02+2x0+a-9≤0判断r成立是q成立的什么条件,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上的一点,为抛物线的焦点,定点,则的外接圆的面积为_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代的数学专著,是“算经十书”中最重要的一种。在其第七章中有如下问题:“今有蒲生一日,长三尺,莞生一日,长一尺,蒲生日自半,莞生日自倍,问几何日而长等?”意思是植物蒲发芽的第一天长高三尺,植物莞发芽的第一天长高一尺。蒲从第二天开始每天生长速度是前一天的一半,莞从第二天开始每天生长速度为前一天的两倍。问这两种植物在何时高度相同?

在此问题中,蒲和莞高度相同的时刻在( )

A. 第二天 B. 第三天 C. 第四天 D. 第五天

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a11 ,其中nN*

1,求证:数列{bn}是等差数列,并求出{an}的通项公式.

2,数列{cncn+2}的前n项和为Tn是否存在正整数m,使得对于nN*,恒成立?若存在,求出m的最小值;若不存在,请说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )

A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP总量不超过4000亿元

查看答案和解析>>

同步练习册答案