精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为,( 为参数),在以坐标原点为极点, 轴正半轴为极轴的极坐标系中,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,若点是直线上一动点,过点作曲线的两条切线,切点分别为,求四边形面积的最小值.

【答案】(Ⅰ)(Ⅱ)2

【解析】试题分析:(1)利用三种方程的转化方法,可得直线的普通方程和曲线的直角坐标方程;(2)利用切线的几何性质,将四边形面积为直角三角形的面积问题.

试题解析:

(Ⅰ)由,代入化简得

因为,所以

又因为,所以

所以直线的普通方程为,曲线的直角坐标方程为

(Ⅱ)将化为,得点恰为该圆的圆心.

设四边形的面积为,则,当最小时, 最小,

的最小值为点到直线的距离

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数),.

(1)若的极值点,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

直角坐标系中,直线为参数),曲线为参数),以该直角坐标系的原点为极点, 轴的非负半轴为极轴建立极坐标系,曲线的方程为.

(1)分别求曲线的极坐标方程和曲线的直角坐标方程;

(2)设直线交曲线两点,直线交曲线两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图:

求分数在的频率及全班人数;

求分数在之间的频数,并计算频率分布直方图中间矩形的高;

若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面四边形中, , 为等边三角形,现将沿翻折得到四面体,点分别为的中点.

(Ⅰ)求证:四边形为矩形;

(Ⅱ)当平面平面时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|mx|﹣|x﹣n|(0<n<1+m),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为(
A.3<m<6
B.1<m<3
C.0<m<1
D.﹣1<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的有
与y=x+1; ②y=x与y=|x|;
③y=|x|与; ④与y=x﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=x+b与曲线 有且只有一个交点,则 的取值范围是 (
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案