【题目】已知向量 =(2 cosx,cosx), =(sinx,2cosx)(x∈R),设函数f(x)= ﹣1. (Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B= ,边AB=3,求边BC.
科目:高中数学 来源: 题型:
【题目】如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(Ⅰ)证明:EM⊥BF;
(Ⅱ)求平面BEF与平面ABC所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1 .
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn= ,数列{cn}的前n项和为Tn , 若不等式(﹣1)nλ<Tn+ 对一切n∈N* , 求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=1+x﹣ ,g (x)=1﹣x+ ,设函数F(x)=f(x﹣4)g(x+3),且函数 F ( x) 的零点均在区间[a,b]( a<b,a,b∈Z )内,则 b﹣a 的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题p:“ ”,则?p是真命题
B.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
C.“x=﹣1”是“x2+2x+3=0”的必要不充分条件
D.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的短轴长为2 ,离心率为 ,点F为其在y轴正半轴上的焦点. (Ⅰ)求椭圆C的方程;
(Ⅱ)若一动圆过点F,且与直线y=﹣1相切,求动圆圆心轨迹C1的方程;
(Ⅲ)过F作互相垂直的两条直线l1 , l2 , 其中l1交曲线C1于M、N两点,l2交椭圆C于P、Q两点,求四边形PMQN面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(sinx,﹣1), =( cosx,﹣ ),函数f(x)=( ) ﹣2.
(1)求函数f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(﹣x)=f(2+x),f(2)=1,则不等式f(x)<ex的解集为( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com