精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(2 cosx,cosx), =(sinx,2cosx)(x∈R),设函数f(x)= ﹣1. (Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B= ,边AB=3,求边BC.

【答案】解:(Ⅰ)f(x)= ﹣1=2 cosxsinx+2cos2x﹣1= sin2x+cos2x=2sin(2x+ ), 令2kπ+ ≤2x+ ≤2kπ+
可得函数f(x)的单调减区间[kπ+ ,kπ+ ](k∈Z);
(Ⅱ)f(A)=2sin(2A+ )=2,∴A=
∵B= ,∴C=
∴sin =
∵AB=3,
∴BC= =
【解析】(Ⅰ)利用向量的数量积公式,结合二倍角、辅助角公式化简,再求函数f(x)的单调减区间;(Ⅱ)求出A= ,C= ,利用正弦定理,求出边BC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(Ⅰ)证明:EM⊥BF;
(Ⅱ)求平面BEF与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn= ,数列{cn}的前n项和为Tn , 若不等式(﹣1)nλ<Tn+ 对一切n∈N* , 求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=1+x﹣ ,g (x)=1﹣x+ ,设函数F(x)=f(x﹣4)g(x+3),且函数 F ( x) 的零点均在区间[a,b]( a<b,a,b∈Z )内,则 b﹣a 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.命题p:“ ”,则?p是真命题
B.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
C.“x=﹣1”是“x2+2x+3=0”的必要不充分条件
D.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的短轴长为2 ,离心率为 ,点F为其在y轴正半轴上的焦点. (Ⅰ)求椭圆C的方程;
(Ⅱ)若一动圆过点F,且与直线y=﹣1相切,求动圆圆心轨迹C1的方程;
(Ⅲ)过F作互相垂直的两条直线l1 , l2 , 其中l1交曲线C1于M、N两点,l2交椭圆C于P、Q两点,求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,﹣1), =( cosx,﹣ ),函数f(x)=( ﹣2.
(1)求函数f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(﹣x)=f(2+x),f(2)=1,则不等式f(x)<ex的解集为(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2lnx+ . (Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)如果对所有的x≥1,都有f(x)≤ax,求a的取值范围.

查看答案和解析>>

同步练习册答案