精英家教网 > 高中数学 > 题目详情

【题目】下列关于充分必要条件的判断中,错误的是(

A.的充分条件

B.的必要条件

C.的充要条件

D.的非充分非必要条件

【答案】B

【解析】

由正弦函数的图象和性质,可判断A;由ab的符号,可判断B

由基本不等式的条件,可判断C;由基本不等式等号成立的条件,可判断D

解:由于x0),可得sinx01),即有sinx2+∞),

则“x0)”是“sinx2”的充分条件,正确;

ab1,可能ab都小于0a+b0,则“a+b2”不是“ab1”的必要条件;

x0可得x;反之可得x0,“x0”是“x”的充要条件;

a0b0可得a+b2,若a+b,可能a0b0

a0b0”是“a+b”的非充分非必要条件.

综上可得ACD正确;B错误.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的图像在处的切线方程;

2)求函数的极大值;

3)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求证:在区间是增函数;

(2),若对任意的,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,分别为的左、右顶点,直线的斜率之积为为椭圆的右焦点,直线.

1)求椭圆的方程;

2)直线过点且与椭圆交于两点,直线分别与直线交于两点.试问:以为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足:对任意,都有,则不等式的解集为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定函数,定义.

1)证明:

2)若,证明:是周期函数;

3)若,证明:是周期函数的充要条件是为有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的定义域恰是不等式的解集,其值域为,函数的定义域为,值域为.

1)求定义域和值域

2)试用单调性的定义法解决问题:若存在实数,使得函数上单调递减,上单调递增,求实数的取值范围并用表示

3)是否存在实数,使成立?若存在,求实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.

(1)求图中的值;

(2)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数存在单调增区间,求实数的取值范围;

2)若为函数的两个不同极值点,证明:.

查看答案和解析>>

同步练习册答案