精英家教网 > 高中数学 > 题目详情

【题目】某景区欲建两条圆形观景步道(宽度忽略不计),如图所示,已知(单位:米),要求圆M分别相切于点BD,圆分别相切于点CD

(1)若,求圆的半径;(结果精确到0.1米)

(2)若观景步道的造价分别为每米0.8千元与每米0.9千元,则当多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)

【答案】(1)34.6米,16.1米;(2)263.8千元.

【解析】

(1)利用切线的性质即可得出圆的半径;

(2)设∠BAD=2α,则总造价y=0.82π60tanα+0.92π60tan(45°﹣α),化简,令1+tanα=x换元,利用基本不等式得出最值.

(1)连结M1M2AM1AM2

∵圆M1ABAD相切于BD,圆M2ACAD分别相切于点CD

M1M2AD,∠M1ADBAD,∠M2AD

∴M1B=ABtan∠M1AB=60×=20≈34.6(米),

∵tan,∴tan=2﹣

同理可得:M2D=60×tan=60(2﹣)≈16.1(米).

(2)设∠BAD=2α(0<α<),由(1)可知圆M1的半径为60tanα,圆M2的半径为

60tan(45°﹣α),

设观景步道总造价为y千元,则y=0.82π60tanα+0.92π60tan(45°﹣α)=96πtanα+108π

设1+tanα=x,则tanα=x﹣1,且1<x<2.

y=96π(x﹣1)+108π()=12π(8x+﹣17)≥84π≈263.8,

当且仅当8xx时取等号,

x时,tanα=,∴α≈26.6°,2α≈53.2°.

∴当∠BAD为53.2°时,观景步道造价最低,最低造价为263.8千元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是抛物线上任意一点,,且点为线段的中点.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若为点关于原点的对称点,过的直线交曲线 两点,直线交直线于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若,求的最小值;

(2)若,求的单调区间;

(3)试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),点的焦点的右侧,且的准线的距离是距离的3倍,经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线轴于点.

1)求抛物线的方程和的坐标;

2)判断直线与直线的位置关系,并说明理由;

3)椭圆的两焦点为,在椭圆外的抛物线上取一点,若的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln+ax﹣1(a≠0).

(I)求函数f(x)的单调区间;

(Ⅱ)已知g(x)+xf(x)=﹣x,若函数g(x)有两个极值点x1,x2(x1<x2),求证:g(x1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆)和双曲线),记轴正半轴、轴负半轴的公共点分别为,又记在第一、第四象限的公共点分别为.

1)若,且恰为的左焦点,求的两条渐近线的方程;

2)若,且,求实数的值;

3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的左、右点分别为在椭圆上,且

(1)求椭圆的方程;

(2)过点(1,0)作斜率为的直线交椭圆MN两点,若求直线的方程;

(3)PQ为椭圆上的两个动点,为坐标原点,若直线的斜率之积为求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1)若,试讨论函数的单调性;

2)若,试讨论的零点的个数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果数列对于任意,都有,其中为常数,则称数列是“间等差数列”,为“间公差”.若数列满足.

(1)求证:数列是“间等差数列”,并求间公差

(2)设为数列的前n项和,若的最小值为-153,求实数的取值范围;

(3)类似地:非零数列对于任意,都有,其中为常数,则称数列是“间等比数列”,为“间公比”.已知数列中,满足,试问数列是否为“间等比数列”,若是,求最大的整数使得对于任意,都有;若不是,说明理由.

查看答案和解析>>

同步练习册答案