精英家教网 > 高中数学 > 题目详情

已知f (x)=x+1,g (x)=2x+1,数列{an}满足:a1=1,an+1=数学公式则数列{an}的前2007项的和为


  1. A.
    5×22008-2008
  2. B.
    3×22007-5020
  3. C.
    6×22006-5020
  4. D.
    6×21003-5020
D
分析:根据题意可得a2n+2=a2n+1+1,从而可知数列{a2n+2}是以2为公比、以a2=a1+1=2为首项的等比数列.进而有a2n+a2n+1=a2n+2a2n+1=3a2n+1,故求数列{an}的前2007项的和,分组求和可得.
解答:∵a2n+2=a2n+1+1=(2a2n+1)+1=2a2n+2,
∴a2n+2+2═2(a2n+2),
∴数列{a2n+2}是以2为公比、以a2=a1+1=2为首项的等比数列.
∴a2n+2=2×2n-1
∴a2n=2n-2.
又a2n+a2n+1=a2n+2a2n+1=3a2n+1,
∴数列{an}的前2007项的和为
a1+(a2+a3)+(a4+a5)+(a6+a7)+…+(a2006+a2007
=a1+(3a2+1)+(3a4+1)+(3a6+1)+…+(3a2006+1)
=1+(3×2-5)+(3×22-5)+(3×23-5)+…+(3×21003-5)
=1+(3×2-5)+(3×22-5)+(3×23-5)+…+(3×21003-5)
=3×(2+22+23+…+21003+1-5×1003
=6×(21003-1)+1-5×1003=6×21003-5020,
故选D
点评:本题以函数为载体,考查等比关系的确定,关键是正确运用条件得出a2n+a2n+1,故可求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的函数.设f (x)=x2+x、g(x)=x+2,若h (x)为f (x)、g(x)在R上生成的一个偶函数,且h(1)=3,则函数h (x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分别求f(x)、g(x)的定义域,并求f(x)•g(x)的值;(2)求f(x)的最小值并说明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在满足下列条件的正数t,使得对于任意的正
数x,a、b、c都可以成为某个三角形三边的长?若存在,则求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案