精英家教网 > 高中数学 > 题目详情
2.函数f(x)=4-$\frac{a}{{e}^{x}}$与函数y=2x有两个交点,则实数a的取值范围为(0,2).

分析 设g(x)=4-$\frac{a}{{e}^{x}}$-2x,对g(x)求导,讨论g′(x)的正负以及对应g(x)的单调性,得出函数y=g(x)有两个零点的等价条件,从而求出a的取值范围

解答 解:设g(x)=4-$\frac{a}{{e}^{x}}$-2x
∴g′(x)=$\frac{a}{{e}^{x}}$-2
下面分两种情况讨论:
①a≤0时,g′(x)<0在R上恒成立,∴f(x)在R上是减函数,不合题意;
②a>0时,由g′(x)=0,得x=ln$\frac{a}{2}$,当x变化时,g′(x)、g(x)的变化情况如下表:

x(-∞,ln$\frac{a}{2}$)ln$\frac{a}{2}$(ln$\frac{a}{2}$,+∞)
g′(x)+0-
g(x)递增极大值2-2ln$\frac{a}{2}$递减
∴g(x)的单调增区间是(-∞,ln$\frac{a}{2}$),减区间是(ln$\frac{a}{2}$,+∞);
∴函数g=f(x)有两个零点等价于如下条件同时成立:
∴g(ln$\frac{a}{2}$)>0由g(ln$\frac{a}{2}$)>0,即2-2ln$\frac{a}{2}$>0,
解得0<a<2e;
∴a的取值范围是(0,2e).
故答案为:(0,2e).

点评 本题考查了导数的运算以及利用导数研究函数的单调性与零点问题,也考查了函数思想、化归思想和分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.tan(-210°)-cos(-210°)=$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.把函数y=sin3x的图象进行怎样的变换,就能得到下列函数的图象.
(1)y=sin(3x-$\frac{π}{3}$);
(2)y=sin(3x+$\frac{π}{4}$)-2;
(3)y=-sinx;
(4)y=-sin3x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:cos(15°-α)cos15°-sin(165°+α)•sin(-15°)=cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,数列{bn}的前n项和为Sn,求使Sn+n•2n+1>30成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系中画出下列二元一次不等式组的解所表示的区域;
(1)$\left\{\begin{array}{l}{x≤2}\\{y<2x-3}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{y≥0}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{-1≤x≤5}\\{-2≤y≤3}\\{x+y≤6}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式|x-3|+|6-x|≥5的解集为{x|x≤2或x≥7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x(ex-e-x),则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}为等比数列,Sn是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则S6=(  )
A.35B.33C.31D.$\frac{63}{2}$

查看答案和解析>>

同步练习册答案