精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|y=log2x,y<0},$B=\left\{{y\left|{y={{(\frac{1}{2})}^x},0<x<1}\right.}\right\}$,则A∪B=(  )
A.(0,1)B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)$D.(-∞,1)

分析 根据指数函数与对数函数的性质,化简集合A、B,求出A∪B即可.

解答 解:∵A={x|y=log2x,y<0}={x|0<x<1}=(0,1),
$B=\left\{{y\left|{y={{(\frac{1}{2})}^x},0<x<1}\right.}\right\}$={y|$\frac{1}{2}$<y<1}=($\frac{1}{2}$,1),
∴A∪B=(0,1)∪($\frac{1}{2}$,1)=(0,1).
故选:A.

点评 本题考查了集合的运算与应用问题,也考查了函数的性质与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.给出下列结论:
①y=x2+1,x∈[-1,2],y的值域是[2,5];
②幂函数图象一定不过第四象限;
③函数f(x)=loga(2x-1)-1的图象过定点(1,0);
④若loga$\frac{1}{2}$>1,则a的取值范围是($\frac{1}{2}$,1);
⑤若2-x-2y>lnx-ln(-y)(x>0,y<0),则x+y<0.
其中正确的序号是②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,4,5,6},B={1,3,5},则集合A∩B=(  )
A.{1,3,5}B.{1,5}C.{2,4,6}D.{1,2,3,4,5.6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设定义在R上的奇函数f(x)的导函数是f′(x),当x≠0,f′(x)+$\frac{f(x)}{x}$>0,若a=2f(2),b=$\frac{1}{3}f(\frac{1}{3}),c=ln3f(ln3)$,比较a,b,c的大小(  )
A.c<b<aB.c<a<bC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C所对的边分别为a,b,c.a=8,b-c=2,cosA=-$\frac{1}{4}$
(Ⅰ)求△ABC的面积S△ABC和sinB
(Ⅱ)$cos(2A-\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:
(Ⅰ)log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅱ)${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{4-{x}^{2},x>1}\end{array}\right.$,若f(x)=-1,则-2或$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α∈[0,2π),化简$\sqrt{1-2sinαcosα}$+$\sqrt{1+2sinαcosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.
(2)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为$\sqrt{2}$,且过点(4,-$\sqrt{10}$).求双曲线方程.

查看答案和解析>>

同步练习册答案